583. 两个字符串的删除操作
思路:匹配成功,则继承前面字符串的最小删除数即可,反之选择当前两字符上一次字符串比较的最小值加1(等于比之前的最佳情况多删一个)
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1
初始化:
for i in range(n + 1):
dp[i][0] = i
for j in range(m + 1):
dp[0][j] = j
72. 编辑距离
此题在不相同的情况下,达到了二维dp的巅峰,其他就不一一论述了,与上题相类似
不同的情况下,可选择[i - 1][j - 1] or [i - 1][j] or [i][j - 1],分别代表了替换、删除、插入的三大题述功能,让这道看似繁琐的题枯木逢春,真是好酒配好菜!
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1
总结
本次解决类似题分别为子数组与子序列两种,子数组不用考虑不匹配情况,子序列考虑
子序列题型包括了是否匹配与匹配数,难点在于判断条件公式以及初始化(初始化严格遵循题目要求一般不会出错)
本章题目也充分体现了dp的用处,很好地进行了全局规划