
概率论
我想要身体健康
学习和锻炼身体比其他事情有更高的价值
展开
-
极大似然估计是在极大概率的情况下估计,为什么能计算出准确的参数?
极大似然估计的目标就是找到一组参数值,使得在这组参数值下,我们观察到的数据出现的概率(也称为似然)最大。例如,如果模型被错误地指定(即,我们选择的概率模型并不是真正产生数据的模型),那么MLE将不能给出准确的估计。中心极限定理:中心极限定理告诉我们,对于足够大的样本大小,很多种类的随机变量之和的分布将接近于正态分布。极大似然估计(MLE)的理念其实并不是在极大概率的情况下进行估计,而是在给定一组观测数据和一个概率模型的情况下,找出最有可能产生这组观测数据的模型参数。原创 2023-06-21 20:27:11 · 172 阅读 · 0 评论 -
一个随机变量服从某分布,为什么在独立变量数量足够大时,又变成了正态分布?
值得注意的是,中心极限定理所要求的独立同分布随机变量的数量是"足够大",通常我们会看到30或更大的数值作为这个"足够大"的阈值。如果我们有大量的独立同分布(i.i.d.)的随机变量,并且这些随机变量的平均值和方差都存在,那么这些随机变量的和(或者平均值)将近似服从正态分布,而且这个正态分布的均值就是原随机变量均值的总和,方差是原随机变量方差的总和除以随机变量的个数。这个定理的重要性在于,它为我们提供了一个可以将复杂分布的问题简化为正态分布的问题的途径,因为正态分布的性质被研究得非常透彻,而且计算相对容易。原创 2023-06-21 20:27:56 · 493 阅读 · 0 评论 -
高尔顿钉板实验是二项分布吗?
但是需要注意的是,高尔顿钉板实验可能不是完全符合二项分布的,因为钉子的落点并不完全独立。钉子的落点可能受钉子的形状、大小、速度等因素影响,这些因素可能会导致落点的分布不完全符合二项分布。如果我们假设钉子落在板子上的概率是p,那么高尔顿钉板实验的结果可以用二项分布来描述,即它满足二项分布的条件,即独立重复实验的结果可以用二项分布来描述。高尔顿钉板实验是一种统计学实验,该实验用来研究给定数量的钉子在给定数量的板子上的平均钉子数量。所以我们可以说高尔顿钉板实验是用二项分布来描述的,但并不能说它完全符合二项分布。原创 2023-01-13 22:54:13 · 1390 阅读 · 0 评论