7.变量筛选方法—子集选择法

文章介绍了模型变量选择的两种主要方法:最优子集法,基于RSS和统计指标如CV法、马洛斯CP值、AIC、BIC进行选择;以及逐步筛选法,包括向前选择、向后选择和混合方法,通过RSS变化和统计显著性决定变量的增减。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

子集选择法:分为最优子集法和逐步筛选法

最优子集法:

1.如果两个模型预测变量数量相同,残差平方和(RSS)越小,模型越优;

2.如果两个模型预测变量数量不同,不能直接比较RSS,因为增加变量,即使该变量不相干,也会导致RSS下降,因此可以选择交叉验证法(CV法)、马洛斯CP值、AIC、BIC、调整后的可决系数进行判断。

逐步筛选法:

1.向前逐步选择:假设有k个预测变量,首先向一个空的模型中加入一个变量,共进行k次,留下RSS最小的变量,再向模型中加入一个变量,进行k-1次,保留RSS最小的变量...

2.向后逐步选择:与向前逐步选择相反,模型有全部的预测变量,即k个预测变量,再逐步移除预测变量,比较RSS

3.混合选择方法:剔除模型中t值小于临界值或者p值大于临界值的变量

马洛斯Cp值:

AIC:

BIC: 

调整后的可决系数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值