子集选择法:分为最优子集法和逐步筛选法
最优子集法:
1.如果两个模型预测变量数量相同,残差平方和(RSS)越小,模型越优;
2.如果两个模型预测变量数量不同,不能直接比较RSS,因为增加变量,即使该变量不相干,也会导致RSS下降,因此可以选择交叉验证法(CV法)、马洛斯CP值、AIC、BIC、调整后的可决系数进行判断。
逐步筛选法:
1.向前逐步选择:假设有k个预测变量,首先向一个空的模型中加入一个变量,共进行k次,留下RSS最小的变量,再向模型中加入一个变量,进行k-1次,保留RSS最小的变量...
2.向后逐步选择:与向前逐步选择相反,模型有全部的预测变量,即k个预测变量,再逐步移除预测变量,比较RSS
3.混合选择方法:剔除模型中t值小于临界值或者p值大于临界值的变量
马洛斯Cp值:
AIC:
BIC:
调整后的可决系数: