【数值分析不挂科】第二章 | 插值与拟合


【第二章:插值与拟合】

1. 插值法概述

  • 为什么要有差值方法?

    现有的数据是极少的,不足以支撑分析的进行,则可以通过插值法“模拟产生”一些新的但又比较靠谱的值来满足需求,这也就是插值的作用。

    或者说已知当前数据,需要预测其他数据,则可以通过已知数据,模拟出多项式方程,进而预测其他数据

  • 龙格现象

    Runge现象:一般来说,节点个数越多,插值函数和被插值函数就有越多的地方相等。但是随着插值节点个数的增加,两个插值节点之间插值函数并不一定能够很好地逼近被插值函数。再者,从舍入误差看,高次插值由于计算量大,可能会产生更严重的误差积累,所以稳定性得不到保证

    解决办法:采用分段低次多项式插值:如分段线性插值和分段三次Hermite插值。在每个小区间采用低次插值则可避免Runge现象.


2.1 多项式插值法

  • 多项式差值存在唯一性

    次数不超过n的多项式集合H,中,满足条件Ln(xj)=yj ( j=0,1…, n) .的插值多项式Ln®∈Hn是存唯一的

  • 多项式插值即解 n个方程组,求出 a0,a1,a2,……,an


2.2 Largrange插值法

Largrange插值算法步骤

  • Lagrange插值法:基函数是 lk(x),系数是函数值 yi
  • 算法如下
    在这里插入图片描述

Largrange插值基函数的性质

在这里插入图片描述


2.3 Newton插值法

差商、差商表及性质

在这里插入图片描述


Newton插值算法步骤

  • Newton插值法:基函数是 wi(x),系数是差商表的对角线元素

在这里插入图片描述


2.4 分段线性插值法

  • 分段低次插值:分段线性差值(不光滑)

在这里插入图片描述


2.5 三次样条插值

  • 三次样条插值 是一个分段函数 每一段是3次多项式 满足2阶连续可微,补充边界条件
  • 三次样条插值是低次分段插值的一种,区别于分段线性插值法,最大的改进在于:每个点左右是光滑的
  • 三次样条与分段Hermite插值的根本区别在于S(x)自身光滑,不需要知道f的导数值(除了在2个端点可能需要);而Hermite插值依赖于f(x)在所有插值点的导数值

算法步骤
在这里插入图片描述


3. 直线拟合最小二乘法

  • 直线拟合的最小二乘法
    在这里插入图片描述

4.1 插值总结

在这里插入图片描述


4.2 本章重点习题

(例题1)Newton插值法

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Graskli

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值