机器学习5数据归一化Feature Scaling

一、为什么要数据归一化?

如图两个样本之间的距离,如果使用欧拉距离的话就是1-5的平法加上200-100的平方再开根号,在这种情况下显然就发现这个距离的大小被发现的时间所主导了;
由于量纲不同导致了最终的距离其实主要衡量的是个发现的时间(起主导作用),因为肿瘤大小之间的差值太小了;
可是我们也很容易发现,如果把时间调整为单位为年的话0.55年和0.27年,此时样本之间的距离又一下子被肿瘤的大小所主导;
很显然我们就发现,如果不进行一些数据的基本处理的话直接进行距离的运算结果很有可能有偏差不能反映准确的结果,因此我们需要对数据进行归一化的处理;
在这里插入图片描述

二、解决方案

数据归一化,解决方案1:

将所有的数据映射到同一尺度;

最值归一化normalization:

把所有的数据映射到0-1之间;这种做法适用于分布有明显的边界,受outlier影响较大;
在这里插入图片描述

解决方案2:

均值方差归一化standardization;

把所有的数据归一到均值为0方差均为1的分布中;
这种做法适用于数据分布没有边界;有可能存在极端数据值的情况;
在这里插入图片描述

三、最值归一化处理normalization

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、均值方差归一化Standardization

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

淅淅同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值