这可能是有史以来南海区比赛的第一道 dp 题了……
题目描述
有一种别样“小猫钓鱼”扑克游戏。有N张牌,每张牌都有一个花色和点数。游戏的规则:扑克接龙时,若前面有同样花色的牌,你可以将这两张牌连同之间的牌都取走,得到的分值为取走牌点数之和。这里说的是可以,不是必须。给定扑克接龙的顺序,求最多的得分。
输入格式
第一行,一个整数 N。
第二行,N个整数,依次表示1-N张牌的花色。
第三行,N个整数,依次表示1-N张牌的点数。
输出格式
一个整数,为游戏可以得到最大得分。
样例输入
7
1 2 1 2 3 2 3
1 4 3 4 3 4 5
样例输出
23
数据范围与提示
对于100%的数据,1≤n≤3000。
解题思路
题目要求求最优解,解法首先排除贪心(因为贪心连样例都过不了),其次递归枚举可能会超时,因此我们用动态规划来解决这道问题。
dp解法
第一步 设置状态
设 f[i] 表示从第一张扑克牌到第 i 张扑克牌的最优解
。
第二步 转移方程
若第 i 张牌不计入取走的牌中(直白说第 i 张牌就是多余的),则 f[i] = f[i-1];若第 i 张牌计入取走的牌,且是取走的牌的最后一张,则 f[i] = max{ f[i] , f[j] + a[j] + a[j+1] + … +a[i]}( j 表示在第 1 ~ i-1 张牌中与第 i 张花色相同的牌)。
让我们迎接本题最后一道菜 —— AC代码。
// poker 正确做法
#include <iostream>
#include <cstdio>
using namespace std;
int n, a[3005], flow[3005], dp[3005];
int main() {
freopen("poker.in", "r", stdin);
freopen("poker.out", "w", stdout);
cin >> n;
for (int i = 1; i <= n; i++) cin >> flow[i];
for (int i = 1; i <= n; i++) cin >> a[i], a[i] += a[i - 1]; //前缀和,方便求取的牌点数之和
for (int i = 1; i <= n; i++) {
dp[i] = dp[i - 1]; //假设第 i 张牌是多余的
for (int j = i - 1; j >= 1; j--) //枚举找到第 j 张牌和第 i 张牌的花色相同
if (flow[i] == flow[j])
dp[i] = max(dp[i], dp[j - 1] + a[i] - a[j - 1]); //状态转移
}
cout << dp[n];
return 0;
}
感谢您阅读 wzr0623 的文章!如果您喜欢,请关注该博主。