扑克游戏(dp初步)

这是一篇关于使用动态规划解决扑克游戏策略问题的文章,介绍了如何通过dp找到最多得分的解法。题目要求在扑克接龙中找到能取走的最大点数,dp状态转移方程为f[i]=max{f[i], f[j]+a[j]+a[j+1]+...+a[i]},其中j是与第i张花色相同的前一张牌。" 115834409,10542417,MATLAB 4轴与6轴机器人DH参数建模及仿真,"['MATLAB', '机器人建模', '机械臂', '仿真']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这可能是有史以来南海区比赛的第一道 dp 题了……

题目描述

有一种别样“小猫钓鱼”扑克游戏。有N张牌,每张牌都有一个花色和点数。游戏的规则:扑克接龙时,若前面有同样花色的牌,你可以将这两张牌连同之间的牌都取走,得到的分值为取走牌点数之和。这里说的是可以,不是必须。给定扑克接龙的顺序,求最多的得分。

输入格式

第一行,一个整数 N。
第二行,N个整数,依次表示1-N张牌的花色。
第三行,N个整数,依次表示1-N张牌的点数。

输出格式

一个整数,为游戏可以得到最大得分。

样例输入

7
1 2 1 2 3 2 3
1 4 3 4 3 4 5

样例输出

23

数据范围与提示

对于100%的数据,1≤n≤3000。

解题思路

题目要求求最优解,解法首先排除贪心(因为贪心连样例都过不了),其次递归枚举可能会超时,因此我们用动态规划来解决这道问题。

dp解法

第一步 设置状态
设 f[i] 表示从第一张扑克牌到第 i 张扑克牌的最优解

第二步 转移方程
若第 i 张牌不计入取走的牌中(直白说第 i 张牌就是多余的),则 f[i] = f[i-1];若第 i 张牌计入取走的牌,且是取走的牌的最后一张,则 f[i] = max{ f[i] , f[j] + a[j] + a[j+1] + … +a[i]}( j 表示在第 1 ~ i-1 张牌中与第 i 张花色相同的牌)。

让我们迎接本题最后一道菜 —— AC代码。

// poker 正确做法
#include <iostream>
#include <cstdio>
using namespace std;
int n, a[3005], flow[3005], dp[3005];
int main() {
    freopen("poker.in", "r", stdin);
    freopen("poker.out", "w", stdout);
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> flow[i];
    for (int i = 1; i <= n; i++) cin >> a[i], a[i] += a[i - 1];  //前缀和,方便求取的牌点数之和
    for (int i = 1; i <= n; i++) {
        dp[i] = dp[i - 1];   //假设第 i 张牌是多余的
        for (int j = i - 1; j >= 1; j--) //枚举找到第 j 张牌和第 i 张牌的花色相同
            if (flow[i] == flow[j])
                dp[i] = max(dp[i], dp[j - 1] + a[i] - a[j - 1]);  //状态转移
    }
    cout << dp[n];
    return 0;
}

感谢您阅读 wzr0623 的文章!如果您喜欢,请关注该博主。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值