扑克游戏(dp初步)

这是一篇关于使用动态规划解决扑克游戏策略问题的文章,介绍了如何通过dp找到最多得分的解法。题目要求在扑克接龙中找到能取走的最大点数,dp状态转移方程为f[i]=max{f[i], f[j]+a[j]+a[j+1]+...+a[i]},其中j是与第i张花色相同的前一张牌。" 115834409,10542417,MATLAB 4轴与6轴机器人DH参数建模及仿真,"['MATLAB', '机器人建模', '机械臂', '仿真']
摘要由CSDN通过智能技术生成

这可能是有史以来南海区比赛的第一道 dp 题了……

题目描述

有一种别样“小猫钓鱼”扑克游戏。有N张牌,每张牌都有一个花色和点数。游戏的规则:扑克接龙时,若前面有同样花色的牌,你可以将这两张牌连同之间的牌都取走,得到的分值为取走牌点数之和。这里说的是可以,不是必须。给定扑克接龙的顺序,求最多的得分。

输入格式

第一行,一个整数 N。
第二行,N个整数,依次表示1-N张牌的花色。
第三行,N个整数,依次表示1-N张牌的点数。

输出格式

一个整数,为游戏可以得到最大得分。

样例输入

7
1 2 1 2 3 2 3
1 4 3 4 3 4 5

样例输出

23

数据范围与提示

对于100%的数据,1≤n≤3000。

解题思路

题目要求求最优解,解法首先排除贪心(因为贪心连样例都过不了),其次递归枚举可能会超时,因此我们用动态规划来解决这道问题。

dp解法

第一步 设置状态
设 f[i] 表示从第一张扑克牌到第 i 张扑克牌的最优解

第二步 转移方程
若第 i 张牌不计入取走的牌中(直白说第 i 张牌就是多余的),则 f[i] = f[i-1];若第 i 张牌计入取走的牌,且是取走的牌的最后一张,则 f[i] = max{ f[i] , f[j] + a[j] + a[j+1] + … +a[i]}( j 表示在第 1 ~ i-1 张牌中与第 i 张花色相同的牌)。

让我们迎接本题最后一道菜 —— AC代码。

// poker 正确做法
#include <iostream>
#include <cstdio>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值