1.1 微分方程建模
使用数学来研究应用时,最困难的部分是将现实生活转化为数学形式。这种转化通常很难,因为它需要将不精确的假设转化为精确的公式。这是无法避免的。建模很难,而提高建模能力的最佳方法与在卡内基音乐厅演奏一样——练习,练习,再练习。
- 什么是模型
重要的是要记住,数学模型和其他类型的模型一样。目标并不是制作“真实”对象的精确副本,而是对真实事物的某些方面进行描述。例如,一个人的肖像、商店里的模特或者一只猪都可以是人类的模型。它们都不是人类的完美复制品,但每个模型都与人类有某些共同之处。绘画描述了某个人的外貌;模特穿着和人一样的衣服;猪是有生命的。这三个模型中哪一个“最好”取决于我们如何使用模型——是为了记住老朋友,购买衣服,还是研究生物学?
我们研究随时间演变的系统的数学模型,但这些模型往往还依赖于其他变量。事实上,现实世界中的系统可能是极其复杂的——怀俄明州的兔子种群数量取决于郊狼的数量、短尾猫的数量、山狮的数量、老鼠的数量(与兔子同类的捕食对象)、农业活动、天气、以及各种兔子疾病等等。我们只能通过做出简化假设,以及将可能或不可能归为一类的效应综合起来,才能构建出足够简单且易于理解的兔子种群模型。
一旦我们建立了模型,我们就应该将模型的预测与来自系统的数据。如果模型和系统一致,那么我们就有信心。我们在创建模型时所做的