微分方程(Blanchard Differential Equations 4th)中文版Section1.1

1.1 微分方程建模

使用数学来研究应用时,最困难的部分是将现实生活转化为数学形式。这种转化通常很难,因为它需要将不精确的假设转化为精确的公式。这是无法避免的。建模很难,而提高建模能力的最佳方法与在卡内基音乐厅演奏一样——练习,练习,再练习。

  • 什么是模型

重要的是要记住,数学模型和其他类型的模型一样。目标并不是制作“真实”对象的精确副本,而是对真实事物的某些方面进行描述。例如,一个人的肖像、商店里的模特或者一只猪都可以是人类的模型。它们都不是人类的完美复制品,但每个模型都与人类有某些共同之处。绘画描述了某个人的外貌;模特穿着和人一样的衣服;猪是有生命的。这三个模型中哪一个“最好”取决于我们如何使用模型——是为了记住老朋友,购买衣服,还是研究生物学?

我们研究随时间演变的系统的数学模型,但这些模型往往还依赖于其他变量。事实上,现实世界中的系统可能是极其复杂的——怀俄明州的兔子种群数量取决于郊狼的数量、短尾猫的数量、山狮的数量、老鼠的数量(与兔子同类的捕食对象)、农业活动、天气、以及各种兔子疾病等等。我们只能通过做出简化假设,以及将可能或不可能归为一类的效应综合起来,才能构建出足够简单且易于理解的兔子种群模型。

一旦我们建立了模型,我们就应该将模型的预测与来自系统的数据。如果模型和系统一致,那么我们就有信心。我们在创建模型时所做的假设是合理的,我们可以使用模型进行预测。如果系统和模型不一致,那么我们必须研究并改进我们的假设。在任何一种情况下,我们都可以通过将其与模型进行比较来了解更多关于该系统的信息。合理的预测类型取决于我们的假设。如果我们该模型是基于精确的规则,如牛顿运动定律或复利规则,然后我们可以使用该模型进行非常准确的定量预测。如果假设不太精确,或者模型是系统,那么精确的定量预测将是愚蠢的。在这种情况下,我们会使用该模型进行定性预测,例如“年的兔子数量怀俄明州将增加……”定性和定量预处理之间的分界线-措辞本身是不精确的,但我们会看到,它往往更好、更容易制作,即使是最精确的模型的定性使用.

  • 数学建模的几点建议
    数学建模的基本步骤如下:
    步骤 1 明晰模型的假设,以及假设描述的研究对象之间的关系。
    步骤 2 完整描述模型中要使用的变量和参数 ——“类似扑克游戏中不同的花色和数字”
    步骤3 使用步骤1中制定的假设来推导与步骤2中的量相关的方程。

第1步是 “科学” 步骤。在步骤1中,我们描述我们认为物理系统是如何工作的,或者至少描述系统最重要的方面是什么?在某些情况下,这些假设是相当推测性的,例如,“兔子不介意过度拥挤。” 在其他情况下,假设非常精确且被广泛接受,例如:“力等于质量和加速度的乘积。” 假设的质量决定了模型的有效性以及模型所涉及的情况。例如,一些种群模型只适用于大环境中的小种群,而另一些则考虑有限的空间和资源。最重要的是,我们必须避免“隐藏的假设”,使模型看起来神秘或合乎逻辑。

第2步是我们命名要研究的数量,如有必要,描述所涉及的单位和规模。离开这一步就像决定说自己的语言,而不告诉任何人这些词的意思。我们模型中的量分为三个基本类别:自变量、因变量和参数。
本书中,自变量几乎总是时间。时间“独立”于模型中的任何其他量。
另一方面,因变量是作为自变量函数的量。例如,如果我们说“位置是时间的函数”,我们的意思是位置是一个取决于时间的变量。我们可以模糊地将用微分方程表示的模型的目标表述为“描述因变量随自变量变化的行为”。例如,我们可能会问因变量是增加还是减少,或者它是振荡还是趋向达到极限。
参数是不随时间变化(通过外部条件或科学实验可调整)的量。例如,当研究火箭运动时,火箭的初始质量是一个参数。当研究高层大气中的臭氧含量,那么冰箱中氟碳化合物的释放速率就是一个参数。当调整参数时,因变量的行为如何变化是模型研究中最重要的方面。
在步骤3中,我们创建方程。我们在这本书中考虑的大多数模型在数学上表示为微分方程。换句话说,我们希望在我们的方程中求导数。查找诸如“…的变化率”或“…的增长率”,因为变化率是导数的同义词。当然还要注意物理模型中的“速度”(位置导数)和“加速度”(速度的导数)。

种群自然增长模型

所有种群自然增长模型基于一个基本的假设:种群变化率与种群数量成正比
即,种群数量变化率仅取决于种群数量,与其他无关。特别地,忽略了空间或资源的限制。这个假设
适用于大环境中的小种群模型。例如:面包上最初少量霉菌点或第一批欧洲移民在美国数量变化。模型很简单。其中自变量 t t t表示时间,因变量 P P P 表示种群数量,参数 k k k 表示种群增长率。变量 P P P 的意义取决于应用问题。如:面包霉菌模型中 P ( t ) P(t) P(t) 表示霉菌面积(或质量)。美国移民模型中 P ( t ) P(t) P(t) 则表示人口数量。根据假设,种群增长的速度 d P / d t dP/dt dP/dt 正比于种群数量,等于 k P kP kP,即 d P d t = k P {\frac{d P}{d t}}=k P dtdP=kP
换句话说, P P P 的变化率与 P P P成正比。请注意,由于与等式两边相关的单位非常一致,我们看到与增长率系数 k k k 相关的单位是1/时间。
特别是,它是一个一阶方程,因为它只包含因变量的一阶导数,它是一个常微分方程,因为它不包含偏导数。
我们使用我们倾向于使用的 d P / d t dP/dt dP/dt Leibniz符号编写了此微分方程。然而,同样的微分方程还有许多其他的表达方法。特别是,我们也可以将此方程式写为 P ′ = k P P' = kP P=kP P ˙ = k P \dot{P}= kP P˙=kP。当自变量为 t t t 时,通常使用 “点” 符号。

模型预测了什么?

形式固然重要,但更重要的是方程式告诉我们有关建模情况的信息。由于对于某个常数 k k k d P / d t = k P d P/dt = kP dP/dt=kP,如果 P = 0 P = 0 P=0,则 d P / d t = 0 d P/dt = 0 dP/dt=0。因此,常数函数 P ( t ) = 0 P(t) = 0 P(t)=0 是微分方程的解。这种特殊类型的解被称为平衡解,因为它永远不变。就种群模型而言,它对应于不存在的物种。
如果在某个时间 t 0 t_0 t0 P ( t 0 ) ≠ 0 P(t_0) \neq 0 P(t0)=0 则,当 t = t 0 t=t_0 t=t0 时,
d P d t = k P ( t 0 ) ≠ 0. {\frac{d P}{d t}}=k P(t_0)\neq 0. dtdP=kP(t0)=0.
因此,人口不是恒定的。如果 k > 0 k> 0 k>0 P ( t 0 ) > 0 P(t_0)> 0 P(t0)>0,我们有
d P d t = k P ( t 0 ) > 0 , t = t 0 {\frac{d P}{d t}}=k P(t_0)> 0, t = t_0 dtdP=kP(t0)>0,t=t0
随着 t t t 增大, P ( t ) P(t) P(t) 变大,因此 d P / d t d P/dt dP/dt 变大。反过来, P ( t ) P(t) P(t) 增加得更快。也就是说,增长率随着人口的增加而增加。因此,我们期望函数 P ( t ) P(t) P(t) 的图形可能如图1.2所示。
在这里插入图片描述
图1.2 满足初始条件 P ( 0 ) > 0 P(0)>0 P(0)>0 微分方程的函数图
t = 0 t = 0 t=0 P ( t ) P(t) P(t) 的值称为初始条件。如果我们从不同的初始条件开始,我们得到不同的函数 P ( t ) P(t) P(t),如图1.3所示。如果 P ( 0 ) P(0) P(0) 是负的 (记住 k > 0 k> 0 k>0),那么对于 t = 0 t = 0 t=0,我们有 d P / d t < 0 d P/dt <0 dP/dt<0,所以 P ( t ) P(t) P(t) 最初是减小的。随着 t t t 增加, P ( t ) P(t) P(t) 变得更负。 t t t 轴下方的图形是 t t t 轴上方图形的镜像,尽管它们在物理上没有意义,因为负人口没有多大意义。
我们对 P ( t ) P(t) P(t) t t t 增加而增加的方式的分析称为微分方程的定性分析。如果我们关心的只是模型是否预测“人口爆炸”,那么我们可以回答 “是的,只要 P ( 0 ) > 0 P(0)> 0 P(0)>0”。
在这里插入图片描述
图1.3 满足不同初始条件的方程的解

微分方程的解析解

另一方面,如果我们知道 P ( 0 ) P(0) P(0) 的精确值 P 0 P_0 P0,并且我们想要预测 P ( 10 ) P(10) P(10) P ( 100 ) P(100) P(100) 的值,那么我们需要关于函数 P ( t ) P(t) P(t) 的更精确的信息。
微分方程连同初始条件
d P d t = k P , P ( 0 ) = P 0 . {\frac{d P}{d t}}=k P, \quad P(0) = P_0. dtdP=kP,P(0)=P0.
称为初值问题初值问题的解是满足方程及初始条件的函 P ( t ) P (t) P(t)。也就是说,
d P d t = k P , for all  t and P ( 0 ) = P 0 . {\frac{d P}{d t}}=k P, \text{for all}\ t \quad \text{and}\quad P(0) = P_0. dtdP=kP,for all tandP(0)=P0.
因此,要找到该微分方程的解,我们必须找到一个函数 P ( t ) P(t) P(t),其导数是 k k k P ( t ) P(t) P(t) 的乘积。一种 (不是很微妙的) 寻找这样一个函数的方法是猜测。在这种情况下,相对容易猜测 P ( t ) P(t) P(t) 的正确形式,因为我们知道指数函数的导数基本上是它本身。(我们可以通过使用变量分离的方法来消除这种猜测,我们将在下一节中进行描述。但是现在,让我们试试指数,看看它会把我们引向何方。)在尝试了各种形式的指数之后,我们看到
P ( t ) = e k t P(t) = e^{kt} P(t)=ekt
是一个函数,其导数 d P / d t = k e k t d P/dt = ke^{kt} dP/dt=kekt k k k P ( t ) P(t) P(t) 的乘积。但是还有其他可能的解决方案,因为 P ( t ) = c e k t P(t) = ce^{kt} P(t)=cekt (其中 c c c 是常数) 得出 d p / d t = c ( k e k t ) = k ( c e k t ) = k P ( t ) dp/dt = c(ke^{kt}) = k(ce^{kt}) = kP(t) dp/dt=c(kekt)=k(cekt)=kP(t)。因此,对于常数 c c c 的任何值,所有 t t t d P / d t = k P dP/dt = kP dP/dt=kP
我们有很多微分方程的解, c c c 的每个值一个。为了确定这些解中哪一个是手头情况下的正确解,我们使用给定的初始条件。我们有
P 0 = P ( 0 ) = c ⋅ e k ⋅ 0 = c ⋅ e 0 = c ⋅ 1 = c . P_0=P(0)=c\cdot e^{k\cdot 0} =c\cdot e^{0}=c\cdot 1=c. P0=P(0)=cek0=ce0=c1=c.
因此,我们应该选择 c = P 0 c = P_0 c=P

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值