毕业设计-2

🚀 毕业设计-day2

⭐️ yolov9 + 思路1(数据增强) 测试结果

本次优化失败 ! 请勿参考

1. yolov9-c 数据增强,训练100轮,验证集进行测试

  1. 将图片中满足“小目标”定义的正样本( 图片占比小于3%的样本 ),利用图像处理库(如OpenCV),将其复制并粘贴在图像中的任意位置。
  2. 粘贴之后,添加样本标签,即对于每个小目标进行标注。
  3. 并且重复这样的操作,从而达到一定的样本数量。
  4. 再次训练,对比效果。
  • 具体针对小目标数据增强的实现代码,毕设结束后可公开;普通的数据增强可见官方yolov9 源代码:
    在这里插入图片描述

  • 运行代码:python val.py --data data/data.yaml --img 640 --batch 2 --conf 0.001 --iou 0.7 --device 0 --weights './runs/exp2/weights/best.pt' --save-json --name yolov9_my_text_640_val

  • 不建议路径存在中文的情况,运行中:
    在这里插入图片描述

2. 结果分析

  • DELL 电脑 2G 显存要爆炸

  • 结果如下:

ClassImagesInstancesPRmAP50mAP50-95
优化前132356690.7440.7080.7470.437
残废后132356690.6880.5690.6120.320

  • 本次失败原因总结:
    1. 没有合理的数据增强,需要调参:
      • 每个小目标复制多少份?
      • 考虑全局随机,还是局部附近随机粘贴?
      • 针对 11 类特定问题,某些类别是否不必增强(路障,路灯等小目标),某些类别需要额外增强(汽车,用于检测拥堵),我们是否应该侧重于汽车类别的小目标?
      • 等等
    2. 随机性太强,被复制后小目标位于不合理的位置,小目标受背景干扰太强。
    3. 复制粘贴时,透明度是否需要调整?
    4. 是否需要将大目标缩小比例,进一步增强小目标检测?
    5. 测试集不是针对小目标的,而是通用场景?

3. 实习知识 + 其他想法

其他优化思路:

  • 思维导图结合,直观分析当前的交通情况 mind-map
  • RAG结合,对视频结果结合 LLM 进行分析
  • GPT-2模型结合,对当前视频关键帧进行目标预测
  • 后端服务fastapiflaskdocker ; 内网穿透 ngrokcpolar ,快速部署与服务器接口,进行远端数据传输与对接,实现远端服务器+近端嵌入式cpu+摄像头,快速低成本应用到交通场景。
  • gpt_academic-master 学术优化,扩展思路
  • autogen 多角色扮演,通过对话agent调用不同的函数,自动优化模型参数以及自动调试,从不同角度看问题
  • 文本转SQL,分析数据库,可以直接搜索的交通视频情况数据统计与分析
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值