🚀 毕业设计-day2
⭐️ yolov9 + 思路1(数据增强) 测试结果
本次优化失败 ! 请勿参考
1. yolov9-c 数据增强,训练100轮,验证集进行测试
- 将图片中满足“小目标”定义的正样本( 图片占比小于3%的样本 ),利用图像处理库(如OpenCV),将其复制并粘贴在图像中的任意位置。
- 粘贴之后,添加样本标签,即对于每个小目标进行标注。
- 并且重复这样的操作,从而达到一定的样本数量。
- 再次训练,对比效果。
-
具体针对小目标数据增强的实现代码,毕设结束后可公开;普通的数据增强可见官方yolov9 源代码:
-
运行代码:
python val.py --data data/data.yaml --img 640 --batch 2 --conf 0.001 --iou 0.7 --device 0 --weights './runs/exp2/weights/best.pt' --save-json --name yolov9_my_text_640_val
-
不建议路径存在中文的情况,运行中:
2. 结果分析
-
DELL 电脑 2G 显存要爆炸
-
结果如下:
Class | Images | Instances | P | R | mAP50 | mAP50-95 |
---|---|---|---|---|---|---|
优化前 | 1323 | 5669 | 0.744 | 0.708 | 0.747 | 0.437 |
残废后 | 1323 | 5669 | 0.688 | 0.569 | 0.612 | 0.320 |
- 本次
失败
原因总结:- 没有合理的数据增强,需要调参:
- 每个小目标复制多少份?
- 考虑全局随机,还是局部附近随机粘贴?
- 针对 11 类特定问题,某些类别是否不必增强(路障,路灯等小目标),某些类别需要额外增强(汽车,用于检测拥堵),我们是否应该侧重于汽车类别的小目标?
- 等等
- 随机性太强,被复制后小目标位于不合理的位置,小目标受背景干扰太强。
- 复制粘贴时,透明度是否需要调整?
- 是否需要将大目标缩小比例,进一步增强小目标检测?
- 测试集不是针对小目标的,而是通用场景?
- 没有合理的数据增强,需要调参:
3. 实习知识 + 其他想法
其他优化思路:
- 与
思维导图
结合,直观分析当前的交通情况 mind-map - 与
RAG
结合,对视频结果结合 LLM 进行分析 - 与
GPT-2
模型结合,对当前视频关键帧进行目标预测 - 后端服务
fastapi
,flask
和docker
; 内网穿透ngrok
和cpolar
,快速部署与服务器接口,进行远端数据传输与对接,实现远端服务器+近端嵌入式cpu+摄像头,快速低成本应用到交通场景。 gpt_academic-master
学术优化,扩展思路autogen
多角色扮演,通过对话agent调用不同的函数,自动优化模型参数以及自动调试,从不同角度看问题文本转SQL
,分析数据库,可以直接搜索的交通视频情况数据统计与分析