【机器学习】6.支持向量机

🚩 西瓜书 第六章笔记它来咯!
🚩 本章核心内容为SVM(支持向量机),将数据升维,使其线性可分!



间隔与支持向量

  • 训练集:以二分类为例
    在这里插入图片描述
    在这里插入图片描述
  • 超平面可以用线性方程描述:
    在这里插入图片描述
  • 样本空间中任意点 x 到超平面 (w,b)的距离为:
    在这里插入图片描述
    在这里插入图片描述
  • 目标:找到最大间隔的划分超平面,即:
    在这里插入图片描述
  • 最大化 ∣ ∣ w ∣ ∣ − 1 ||w||^{-1} ∣∣w1 ,这等价于最小化 ∣ ∣ w ∣ ∣ 2 ||w||^{2} ∣∣w2 ,于是上式重写为:
    在这里插入图片描述
  • 上式就是支持向量机(SVM)的基本型

对偶问题

  • 为了求解式6.6的 凸二次规划 问题,可以使用现成的优化计算包求解,但是有更高效的办法
  • 对式6.6使用拉格朗日乘子法得到其“对偶问题”
    【什么是拉格朗日乘子法】

在这里插入图片描述

  • 令未知量 w 和 b 求偏导为零得:
    在这里插入图片描述

  • 求得模型:
    在这里插入图片描述

  • 上述过程需要满足KKT条件:
    在这里插入图片描述

  • 支持向量机有一个重要的性质:训练完成后,大部分的训练样本都不需保留,最终模型仅支持向量有关。

核函数

  • 如果样本在当前维度线性不可分(例如异或问题),那么一定存在一个高维特征空间使得样本可分。
  • 二分类问题最好仅用一个超平面来分类。
    在这里插入图片描述
  • 高维 超平面 模型可以表示为:
    在这里插入图片描述
  • 为了求解其中的模型参数,根据之前的经验,有如下目标函数及其约束方程:
    在这里插入图片描述
  • 对偶问题为:
    在这里插入图片描述
    在这里插入图片描述
  • 为了避免困难的计算,可以设想一个可以在原始样本空技能中直接计算的函数,其结果就是高纬内积(假装存在这样一个函数,意淫ing):
    在这里插入图片描述
  • 于是解得 支持向量展式
    在这里插入图片描述

定理(核函数)
在这里插入图片描述

  • 上述定理表明,只要一个对称函数对应的核矩阵半正定,就能作为核函数使用
  • 对于一个半正定核矩阵,总能找到一个与之对应的映射 ϕ \phi ϕ
  • 任何一个核函数都隐式定义了一个 再生核希尔伯特空间 RKHS 的特征空间。
    在这里插入图片描述
  • 核函数的线性组合也是核函数;两个核函数的直积也是核函数;任意函数与核函数相乘也是核函数

软间隔与正则化

  • 针对部分线性不可分问题,提出了软间隔来允许支持向量机在一些样本上出错。
    在这里插入图片描述
  • 在最大化间隔的同时,不满足约束的样本应尽可能少。优化目标可写为:
    在这里插入图片描述
  • 其中 C 为正常数,式中的0/1损失函数为:
    在这里插入图片描述
  • 当 C 为 ∞ 时,使得所有样本均能满足约束,为强间隔。
  • 由于0/1损失函数非凸、非连续,因此常使用一些“替代损失函数”,方便公式6.29的求解:
    在这里插入图片描述
    在这里插入图片描述
  • 引入“松弛变量”,得到(软间隔支持向量机):
    在这里插入图片描述

支持向量回归 SVR

  • 对于回归问题(拟合),希望得到一条间隔带,使得更多的样本落入此间隔带中。
    在这里插入图片描述
  • 式中包含不敏感损失函数
    在这里插入图片描述

核方法

表示定理
----------------------------------------条件----------------------------------------
H 为核函数对应的再生核希尔伯特空间
∣ ∣ h ∣ ∣ H ||h||_H ∣∣hH 表示空间中关于 h 的范数
对于任意单调递增函数 Ω
在这里插入图片描述
对于任意非负损失函数 l l l
在这里插入图片描述
---------------------------------------------------------------------------------------.
优化问题
在这里插入图片描述
可表示为
在这里插入图片描述

  • 表示定理对损失函数没有限制,对正则化项Ω 仅要求单调递增,甚至不需要是凸函数,意味着对于一般的损失函数和正则化项,优化问题6.57的最优解 h ∗ ( x ) h^*(x) h(x) 都可以表示成核函数的线性组合。 这显示出核函数的巨大威力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值