🚩 西瓜书 第六章笔记它来咯!
🚩 本章核心内容为SVM(支持向量机),将数据升维,使其线性可分!
间隔与支持向量
- 训练集:以二分类为例
超平面
可以用线性方程描述:
- 样本空间中任意点 x 到超平面 (w,b)的距离为:
- 目标:找到
最大间隔
的划分超平面,即:
- 最大化
∣
∣
w
∣
∣
−
1
||w||^{-1}
∣∣w∣∣−1 ,这等价于最小化
∣
∣
w
∣
∣
2
||w||^{2}
∣∣w∣∣2 ,于是上式重写为:
- 上式就是
支持向量机(SVM)
的基本型
对偶问题
- 为了求解式6.6的
凸二次规划
问题,可以使用现成的优化计算包求解,但是有更高效的办法 - 对式6.6使用
拉格朗日乘子法
得到其“对偶问题”
【什么是拉格朗日乘子法】
-
令未知量 w 和 b 求偏导为零得:
-
求得模型:
-
上述过程需要满足KKT条件:
-
支持向量机有一个重要的性质:训练完成后,大部分的训练样本都不需保留,最终模型仅支持向量有关。
核函数
- 如果样本在当前维度线性不可分(例如异或问题),那么一定存在一个高维特征空间使得样本可分。
- 二分类问题最好仅用一个超平面来分类。
- 高维 超平面 模型可以表示为:
- 为了求解其中的模型参数,根据之前的经验,有如下目标函数及其约束方程:
- 其对偶问题为:
- 为了避免困难的计算,可以设想一个可以在原始样本空技能中直接计算的函数,其结果就是高纬内积(假装存在这样一个函数,意淫ing):
- 于是解得 支持向量展式:
定理(核函数)
:
- 上述定理表明,只要一个对称函数对应的核矩阵半正定,就能作为核函数使用。
- 对于一个半正定核矩阵,总能找到一个与之对应的映射 ϕ \phi ϕ
- 任何一个核函数都隐式定义了一个
再生核希尔伯特空间 RKHS
的特征空间。
- 核函数的线性组合也是核函数;两个核函数的直积也是核函数;任意函数与核函数相乘也是核函数
软间隔与正则化
- 针对部分线性不可分问题,提出了
软间隔
来允许支持向量机在一些样本上出错。
- 在最大化间隔的同时,不满足约束的样本应尽可能少。优化目标可写为:
- 其中 C 为正常数,式中的
0/1损失函数
为:
- 当 C 为 ∞ 时,使得所有样本均能满足约束,为强间隔。
- 由于0/1损失函数非凸、非连续,因此常使用一些“替代损失函数”,方便公式6.29的求解:
- 引入“松弛变量”,得到(软间隔支持向量机):
支持向量回归 SVR
- 对于回归问题(拟合),希望得到一条间隔带,使得更多的样本落入此间隔带中。
- 式中包含
不敏感损失函数
:
核方法
表示定理
:
----------------------------------------条件
----------------------------------------
令 H 为核函数对应的再生核希尔伯特空间
∣ ∣ h ∣ ∣ H ||h||_H ∣∣h∣∣H 表示空间中关于 h 的范数
对于任意单调递增函数 Ω
对于任意非负损失函数 l l l
---------------------------------------------------------------------------------------.
优化问题
可表示为
- 表示定理对损失函数没有限制,对正则化项Ω 仅要求单调递增,甚至不需要是凸函数,意味着对于一般的损失函数和正则化项,优化问题6.57的最优解 h ∗ ( x ) h^*(x) h∗(x) 都可以表示成核函数的线性组合。 这显示出核函数的巨大威力。