% 导入数据
data = load(‘data.mat’); % 假设数据已保存在data.mat文件中
X_train = data.X_train; % 训练集输入特征数据,大小为[N_train, D]
Y_train = data.Y_train; % 训练集输出标签数据,大小为[N_train, 1]
X_test = data.X_test; % 测试集输入特征数据,大小为[N_test, D]
Y_test = data.Y_test; % 测试集输出标签数据,大小为[N_test, 1]
% 迁移学习预训练模型
pretrainedModel = trainPretrainedModel(X_train, Y_train);
% 提取特征
trainFeatures = extractFeatures(pretrainedModel, X_train);
testFeatures = extractFeatures(pretrainedModel, X_test);
% 构建GASF-CNN-Multihead-Attention模型
model = buildModel();
% 训练模型
model = trainModel(model, trainFeatures, Y_train);
% 测试模型
predictions = testModel(model, testFeatures);
% 计算准确率
accuracy = sum(predictions == Y_test) / numel(Y_test);
% 自定义迁移学习预训练函数
function pretrainedModel = trainPretrainedModel(X_train, Y_train)
% 在此处训练和配置预训练模型,可以使用现有的深度学习模型,如VGG、ResNet等
% 使用X_train和Y_train进行训练
% 返回预训练的模型
end