CEEMDAN+CNN+Transformer多变量预测时间序列预测

CEEMDAN+CNN+Transformer多变量预测
时间序列预测
创新点
多尺度特征提取:CEEMDAN将复杂的时间序列分解成多个IMFs,使得CNN和Transformer能够在不同频率尺度上提取特征和依赖关系。
组合优势:结合了CEEMDAN的信号分解能力、CNN的局部特征提取能力和Transformer的全局依赖捕捉能力。
优点:
精细化处理:CEEMDAN分解后的IMFs提供了更精细的频率成分,使CNN和Transformer在不同尺度上提取和学习特征。
噪声鲁棒性:CEEMDAN的降噪特性结合CNN和Transformer的强大建模能力,提高了模型对噪声的鲁棒性和预测性能
模型精度超级高,指标很低,R2几乎接近1,模型还可以继续改进,继续缝合,创新点超强。提前检索过,目前没有很多人结合进行预测,创新点强,先发先得!!!
Python代码torch
功能如下:
1.从csv或者xlsx文件中读取数据,注释齐全,适合小白。
2.多变量预测,多变量输入,单变量输出
3.指标,对比图齐全
4.代码到手一键运行,自带开原数据集。
在这里插入图片描述
在这里插入图片描述

Transformer是一种被广泛应用于自然语言处理任务的神经网络模型,它的注意力机制使其能够很好地捕捉到输入序列中不同位置之间的关联信息。近年来,研究人员开始将Transformer模型应用于多变量时间序列预测任务。 传统的时间序列预测方法往往只考虑单变量的数据,而现实中的时间序列往往是由多个变量组成的。使用Transformer进行多变量时间序列预测可以充分利用不同变量之间的关系,提高预测的准确性。 在多变量时间序列预测中,输入数据通常是一个二维矩阵,其中每一行表示一个时间步长的输入向量,每一列表示一个变量Transformer模型通过自注意力机制来计算不同时间步的输入之间的相关度,然后结合其他卷积或全连接层进行预测。 与传统的时间序列预测方法相比,Transformer模型具有以下优势:首先,Transformer模型可以同时处理多个变量之间的关系,能够更好地捕捉到变量之间的复杂关联。其次,通过自注意力机制,Transformer模型可以自适应地学习不同时间步之间的依赖关系。最后,Transformer模型能够处理变长的时间序列,适用于各种不同的时间序列数据。 然而,Transformer模型在多变量时间序列预测中也存在一些挑战。首先,由于多变量时间序列数据的维度较高,模型的训练和推理过程可能会变得更加复杂和耗时。其次,在处理时序数据时,Transformer模型可能面临长期依赖问题,需要采用一些技巧来解决。此外,Transformer模型需要大量的训练数据来进行有效的学习,因此数据的准备和预处理也是一个关键的问题。 综上所述,Transformer模型在多变量时间序列预测中具有很大的应用潜力,但也需要针对其特点和挑战进行适当的优化和改进。随着研究的进一步深入,相信Transformer模型在多变量时间序列预测领域会有更加广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值