Deepseek发布的Janus-Pro-1B初体验

详情见:GitHub - deepseek-ai/Janus: Janus-Series: Unified Multimodal Understanding and Generation Models

Janus-Pro-1B发布了,很厉害的样子,赶紧体验一下吧

1、下载模型代码压缩包,解压

2、下载模型权重,参数:(需翻墙)

官方代码是直接从官网下载,考虑的网络问题,自己先提前下载权重

由于权重有点大,手动下载文件:( 参考轻松学会HuggingFace模型下载与保存-CSDN博客

另外建文件夹命名如D:\.........\Janus-main\{自己命名文件名,此处命名为Janus-Pro-1B}:结构如下

3、创建python环境

此处按照教程创建python>=3.8后

pip install -r requirements.txt 

若出现报错

### DeepSeek AI Janus 1B 模型概述 DeepSeek 提供了一系列先进的多模态理解和文本到图像生成模型,其中包括不同规模的版本。对于较小规模的模型,如 Janus 1B,在资源有限的情况下可能更易于部署和测试。然而,具体关于 Janus 1B 版本的信息较少提及于现有资料中[^1]。 尽管如此,基于对更大规模模型的理解,可以推测 Janus 1B 应该继承了系列模型的核心特性,但在参数量上有所减少以适应更低配置环境下的应用需求。这使得它成为初步探索或轻量化应用场景的理想选择[^2]。 ### 文档获取途径 官方文档通常会提供详细的安装指南、API 参考以及最佳实践建议。虽然特定针对 Janus 1B 的公开文档链接未被直接给出,访问 DeepSeek 官方网站或 GitHub 页面可能是获得最新版次级模型文档的有效方式之一。 ### 下载方法 下载过程一般涉及注册账号并遵循平台提供的指引完成授权流程后才能获取所需文件。考虑到安全性及版权保护因素,推荐通过正规渠道申请使用权。 ```bash # 假设存在一个命令用于下载预训练权重 wget https://example.com/path_to_janus_1b_weights.tar.gz tar -xzvf path_to_janus_1b_weights.tar.gz ``` 请注意上述示例仅为示意性质,并不代表实际可用路径;真实情况下需参照官方说明操作。 ### 使用教程概览 为了简化用户体验,许多框架都提供了便捷的一键部署方案。例如,对于较大尺寸的 Janus Pro 7B 而言,可以通过 Kubernetes 集群执行一系列 YAML 文件实现自动化设置[^3]: ```yaml # comfyui-deployment.yaml 示例片段 (仅作展示用途) apiVersion: apps/v1 kind: Deployment metadata: name: janus-pro-7b spec: replicas: 1 ... ``` 而对于较小型号如 Janus 1B,则可能会有更为简单的本地运行模式支持快速启动实验项目。具体的使用指导应当参阅随附的手册或是在线帮助中心的内容更新。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值