具体与抽象一体,理想与现实齐飞。
线性代数知识补充:
一.什么是线性代数
1.1“代数”的意义
1.2“线性”的意义
1.2.1线性函数的概念
严格来说,只有过原点的最简单的直线f(x)=kx才被称为一元线性函数。
满足“线性”的条件:
(1)可加性:
·和的函数=函数的和;
(2)比例性:
·比例的函数=函数的比例;
(3)线性的全部意义:
·线性组合的函数=函数的线性组合;
1.2.1线性函数概念的推广
矩阵实际上就是高等线性函数(这里指的是线性方程组)的系数。
1.2.3多元线性函数的几何意义
(1)坐标系由二维扩展到三维
(2)两个平面加起来
n元的线性函数,坐标系扩展到n+1维,其几何图形仍将是一个低于坐标系维度一个维数的“子空间”。
n个n元线性函数组成一个满秩方程组才能表示一条直线。
1.2.4n维(高维)空间的直观理解
局部空间的看法:视点远离就降维;
1.3线性映射和线性变换
1.3.1线性映射的几何意义
线性映射就是把线段映射到线段→线性映射就是把向量映射到向量;
定义:
T(a+b)=Ta+Tb
T(ka)=kTa
T是映射运算,a、b是任意两个向量。
1.3.2线性变换的几何意义
定义:
数据F上线性空间V中的变换T若满足条件:
T(a+b)=Ta+Tb(a,b属于V)
T(ka)=kTa(k属于F,a属于V)
则称T为V中的线性变换。
两个含义:
变换空间里的向量,空间坐标系不变;或者变换坐标系而向量不变。两者是相对的,结果等价。
二.向量的基本几何意义
2.1向量概念的几何意义
既有大小也有方向,可合成可分解。
2.2向量加法的几何及物理意义
加法:首尾相连,首连尾,方向指向末向量。
减法:首首相连,尾连尾,方向指向被减向量。
2.3向量内积的几何和物理意义
2.3.1几何解释
一个向量在另一个向量上投影的积,也就是同方向的积。
实际上,矩阵的乘法运算本质上也是行向量和列向量的内积运算。两个矩阵相乘,根据矩阵乘积的定义,就是左矩阵的行(向量)与右矩阵的列(向量)进行逐次内积。
内积值越大,两个向量在方向上就越接近,内积值越下,两个向量在方向上就越相反。
2.3.2物理解释
物理做功
课程内容
(1)线性模型-回归-第3章
(2)分类-第3章
(3)聚类——第9章
(4)降维与度量学习-第10章/特征选择与稀疏学习-第11章
(5)推荐
学习参考:周志华机器学习西瓜书
(1)3.1基本形式
线性模型(linear model)预测函数:
向量形式:
其中 ,w和b学得之后,模型便确认。
3.2线性回归
概念理解-AI人工智能、机器学习/深度学习、数据挖掘
机器学习
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径。
机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。
机器学习有下面几种定义:
(1)机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。
(2)机器学习是对能通过经验自动改进的计算机算法的研究。
(3)机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。
第四阶段20世纪80年代中叶,是机器学习的最新阶段。这个时期的机器学习具有如下特点:
(1)机器学习已成为新的学科,它综合应用了心理学、生物学、神经生理学、数学、自动化和计算机科学等形成了机器学习理论基础。
(2)融合了各种学习方法,且形式多样的集成学习系统研究正在兴起。
(3)机器学习与人工智能各种基础问题的统一性观点正在形成。
(4)各种学习方法的应用范围不断扩大,部分应用研究成果已转化为产品。
(5)与机器学习有关的学术活动空前活跃。
人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。2021年9月25日,为促进人工智能健康发展,《新一代人工智能伦理规范》发布。
深度学习
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。
深度学习是学习据样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
特点 :
数据挖掘
数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。