
数学建模
文章平均质量分 76
alwaysuzybai
"Serena, you're the most beautiful, amazing, alive person I've ever know."
展开
-
时间序列流程图
时间序列原创 2023-05-31 20:44:05 · 351 阅读 · 0 评论 -
2023年第十三届MathorCup高校数学建模挑战赛|C题|电商物流网络包裹应急调运与结构优化问题
请将 DC9 相关线路的货量分配到其他线路,使所有包裹尽可能正常流转,并使得 DC9 关停前后货量发生变化的线路数尽可能少,且保持各条线路的工作负荷尽可能均衡。受节假日和“双十一”、“618”等促销活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事件导致物流场地临时或永久停用时,其处理的包裹将会紧急分流到其他物流场地,这些因素均会影响到各条线路运输的包裹数量,以及各个物流场地处理的包裹数量。,请给出因 DC5 关停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况。原创 2023-04-14 21:07:58 · 1999 阅读 · 0 评论 -
2023妈妈杯MatherCup C题思路 4月13日
安装spacy 原创 2023-04-14 09:50:35 · 1611 阅读 · 0 评论 -
2023年第十三届MathorCup高校数学建模挑战赛|A题|量子计算机在信用评分卡组合优化中的应用
QUBO 模型是指二次无约束二值优化(Quadratic Unconstrained Binary Optimization)模型,它是一种用于解决组合优化问题的数学模型。在QUBO模型中,需要将问题转化为一个决策变量为二值变量,目标函数是一个二次函数形式优化模型。QUBO 模型可以运行在量子计算机硬件上,通过量子计算机进行毫秒级的加速求解。这种模型和加速方式在未来各行业中将得到广泛的实际应用。因此现阶段研究基于 QUBO 模型的量子专用算法十分有应用价值。例如。原创 2023-04-13 10:20:15 · 5730 阅读 · 0 评论 -
Python数学建模问题总结(2)数据可视化Cookbook指南【源自Google可视化团队】
今天跟大家分享一套谷歌数据可视化团队形成的全面的数据可视化指南,涵盖了设计原则、图表分类、图表的选用、样式设计、交互设计、仪表板设计等方面。一、可视化问题不论你是从事数据相关工作,还是业务相关工作,或多或少都会需要用到数据可视化,就可能会面临以下问题:不会选可视化图表可视化图表的样式种类繁杂,在不同业务场景下,不知道怎么选择合适的可视化图表;做出来的可视化效果不美观图表那么多你却只会用柱状图和饼图,排版配色全凭感觉,可视化作品杂乱缺乏美感。数据可视化的成果无法发挥价值。原创 2023-01-06 19:08:03 · 464 阅读 · 0 评论 -
Python数学建模问题总结(1)NameError: name ‘xxx‘ is not defined
情况八:两个.py文件的函数或类调用问题(一个.py文件要调用另一个.py文件中的函数或者类时,需要添加该代码文件所在路径,否则会报“NameError: name ‘XXX’ is not defined”的错误)。情况五:NameError: name 'module模块' is not defined;情况六:NameError: name 'reload' is not defined;情况四:NameError: name 'file' is not defined;情况七:全局变量的问题;原创 2023-01-06 17:23:52 · 2861 阅读 · 2 评论 -
2022年亚太地区大学生数学建模竞赛/2022年亚太杯1月加赛E题思路
除此之外,以色列也被国际社会确认拥有核武,哈萨克斯坦作为苏联解体后第三大核武器拥有国,因原苏联时期核试验多在哈萨克进行,其国家和人民深受其害,独立主动放弃核武器,并关闭苏军建立的数千座核试验设施,另外乌克兰与南非因和平原因放弃其核武,属于曾经拥有核武的国家。首先观察第一个表单‘增加’proliferation,可以看出全世界范围内‘现拥有’Possession有9个国家,但是不能忽略曾经拥有但是现在已经放弃核武器的国家,我们可以去查看第二个表单‘库存’stockpiles,筛选出来拥有过核武器的国家。原创 2023-01-05 20:41:11 · 1805 阅读 · 14 评论 -
2022年第十二届APMCM亚太地区数学建模竞赛1月加赛E题翻译以及思路
"小男孩" 的爆炸威力约为14000吨TNT当量,使广岛成为一片废墟,而 "沙皇炸弹" 的威力可与几十个甚至几百个 "小男孩" 相比。就人类研制的核武器的威力而言,如果摧毁地球,并不是指可以把地球炸成碎片,而是指人类和地球上的生物的生存环境被破坏了。APMCM组委会要求你的团队解决目前的报告和未来的核武器预测。根据附件中的数据或你收集的数据,建立一个数学模型来预测核武器的数量,并预测未来100年拥有核武器的国家。预测未来100年核武器数量的变化趋势,2123年的核武器总数,以及每个国家的核武器数量。原创 2023-01-05 14:46:02 · 2402 阅读 · 0 评论 -
基于监控视频的前景目标提取|GMCM2017-D problem
这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。在监控视频中,当监控摄像头发生晃动或偏移时,视频也会发生短暂的抖动现象(该类视频变换在短时间内可近似视为一种线性仿射变换,如旋转、平移、尺度变化等)。对一个不包含动态背景、摄像头稳定拍摄时间大约5秒的监控视频,构造提取前景目标(如人、车、动物等)的数学模型,并对该模型设计有效的求解方法,从而实现类似图1的应用效果。原创 2022-12-13 15:53:58 · 646 阅读 · 0 评论 -
机理类模型的建模思路|2021年亚太赛B题|2022备赛|前景目标提取
理论价值-矩阵理论,矩阵秩的应用;背景意义-视频前景目标提取;数学方法-优化模型,智能算法;后续研究-矩阵理论价值,运算复杂;应用推广-视频应用广泛;数学建模竞赛的典型题目、未来趋势题目。原创 2022-11-22 16:17:43 · 589 阅读 · 0 评论 -
机器学习参数|数学建模|自相关性
对于模型:如果随机误差项的各期望值之间存在着相关关系,即:这时,称随机误差项之间存在自相关性(autocorrelation)或序列相关。随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶自回归形式,即随机误差项只与它的前一期值相关:或者,则称这种关系为一阶自相关。p阶自相关性可以表示为:是满足回归模型基本要求的随机误差项。我们称之为p 阶自回归形式,或模型存在 p 阶自相关。由于无法观察到误差项,只能通过残差项来判断的行为。如果。原创 2022-11-22 15:20:18 · 2272 阅读 · 0 评论 -
数学建模英文论文的写作方法和步骤
关于英文大写字母的简写,第一次出现写全称并且外加括号,里包含缩写,接下来便可以直接使用简写。总之,摘要必须出现以下部分:提出问题;解决问题;回答问题;结论意义。原创 2022-11-21 16:38:37 · 1082 阅读 · 0 评论 -
查阅相关文献描述CN,SMC,EMCI,LMCI,AD五类疾病的早期干预和诊断标准|2022数维杯国赛C题
Gold 等以病理诊断为金标准,发现多个标准的敏感度非常低,但均有较高的特异度:DSM-IV、ADDTC和NINDS-AIREN可能VaD标准的敏感度分别为50%、70%和55% , 特异度分别为84%、78%和84%;引起痴呆的病因很多,不同病因,治疗效果和预后不同。诊断痴呆后,要结合患者认知障碍起病形式、各认知域和精神行为损害的先后顺序及特征、病程发展特点以及既往史和体格检查提供的线索,对痴呆的病因做出初步判断,然后选择合适的辅助检查,最终确定痴呆综合征的可能病因,尤其注意识别可治性、可逆性痴呆。原创 2022-11-21 10:05:37 · 3113 阅读 · 0 评论 -
ANDI数据集介绍|补充信息|2022数维杯国际赛C题
IMAGEUID、Ventricles 心室、Hippocampus 海马体、WholeBrain 、Entorhinal 嗅内区、 Fusiform 梭状回、 MidTemp 颞中回 、 ICV → 可以和 PET数据的定量数据 一起分析,对结构向数据和功能向数据的结合使用可以有效降低自然衰老带来的个体间差异。6.上述各信息的bl值。2.生物标记物量化值。原创 2022-11-21 00:22:45 · 1734 阅读 · 7 评论 -
ADNI数据集-数据分析11.17
4850名认知正常/正常衰老老年人(CN),CN参与者是ADNI研究中的对照受试者,他们没有表现出抑郁,轻微认知障碍或痴呆的迹象。2968名早期轻度认知障碍患者(EMCI),5236名晚期轻度认知障碍患者(LMCI),1738名阿尔兹海默症。1416名重要记忆关注/主观记忆疾病(SMC),解决健康老年人对照组与MCI之间的差距。是“Relative IDentifier”的英文缩写,相对标识符的意思;colprot origprot 和蛋白有关的医学术语;是医学研究上经常使用的数据集;原创 2022-11-19 23:47:08 · 3655 阅读 · 4 评论 -
用Python实现对表格中某一列所有数据加减乘除
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。引入Pandas库,使用DataFrame数据结构实现对csv格式下的数据表某一列所有值进行相互间的加减乘除运算,本文用于处理1w5行数据的数据集。除以12得到年份,求得的年份再加上Participants初次参与实验的年龄。,可以得到Participants每次参与实验的不同年龄。原创 2022-11-18 20:32:20 · 7380 阅读 · 0 评论 -
2022年数维杯国际赛C题翻译
它的临床特征是全方位的痴呆,包括记忆障碍、失语症、流利性障碍、失认症、视觉空间技能障碍、执行功能障碍以及性格和行为改变,其原因是仍然未知。请使用附录中提供的不同类别人群的大脑结构特征和认知行为特征来构建阿尔茨海默病识别模型,并设计智能诊断方法来准确诊断阿尔茨海默病。(4) 附件中的同一样本包含在不同时间点收集的特征,请根据时间点对其进行分析,以揭示不同类别疾病随时间演变的模式。(5) 请查阅相关文献,描述CN、SMC、EMCI、LMCI和AD五类疾病的早期干预和诊断标准。早期轻度认知障碍患者(EMCI)、原创 2022-11-17 13:04:12 · 1218 阅读 · 0 评论 -
市场调查与分析[市场调查员][抽样技术方案][抽样方法][F检验]
分层抽样是指在抽样时,将总体分成互不相交的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本的方法。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。4、电话市场调查员:根据电话号码对目标被访者进行电话调查,采集数据,电话调查一般比较简短,对被访者要求不高。5、对市场信息进行分析,找出潜在客户,进行专项调查,并取得准确的调查结果。1、根据市场调查计划,提出调查组织方案,上报市场部主管,签批后执行。3、整理取得的市场信息,形成市场信息报告书。原创 2022-11-16 14:14:08 · 1439 阅读 · 0 评论 -
正大杯市场调查与分析大赛|赛前准备 持续更新ing
F临界值跟统计量的F相比,F大于F的临界值,则拒绝原假设。确定实际观测值与之间的不一致程度,P值越小,说明实际观测值跟之间不一致的程度越大,检验的结果越显著。F值是大好,如果F值不显著,说明模型的总体解释能力不够,不能采用模型进行分析,一般以概率 (P)5%作为显著评定标准。在离散程度的测度中,最不易受极端值影响的是(B)A.极差B.四分位差C.标准差D.平均差。原创 2022-11-15 21:04:02 · 2386 阅读 · 0 评论 -
APMCM亚太地区数学建模竞赛准备与训练
APMCM亚太地区数学建模竞赛准备与训练大部分的信息的获取通过图像图形获得~原创 2022-11-15 20:13:06 · 533 阅读 · 0 评论 -
什么是统计误差
减少统计误差,把统计误差控制在科学合理范围,是统计理论研究的重要内容, 也是统计实践的重要方面。在统计生产过程中,减少各个环节统计误差,对确保数据真实准确、提高统计数据质量至关重要。原创 2022-11-09 11:04:19 · 604 阅读 · 0 评论 -
机器学习数据挖掘十大经典算法 数学建模常用算法
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006 (香港召开)年12月评选出了数据挖掘领域的十大经典算法。不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。原创 2022-11-09 08:39:55 · 1419 阅读 · 0 评论 -
回归和拟合有什么不同-(非)参数检验-假设检验
由于拟合的过程是寻找一个函数使其在某种准则下与所有数据点最为接近,因此我认为拟合曲线可以用于数据可视化或推断没有数据可用的函数值,并总结两个或多个变量之间的关系,一般用于分析少量的较为准确的数据。而对于回归,常会用于基于含有随机误差的大数据的预测分析,挖掘大数据间的联系或某种规律。拟合侧重于调整曲线的参数,使得与数据相符,是一种数据建模方法。而回归重点在研究两个变量或多个变量之间的关系,是一种数据分析方法。回归是拟合的一种方法,拟合的概念更为广泛,包括回归、插值和逼近。2.3需要的信息不同。原创 2022-11-08 09:31:33 · 2294 阅读 · 0 评论 -
回归分析中15个统计量解释|Eviews回归结果的理解
(-2*L/N+2*k/N,L为对数似然估计函数值,k为滞后阶数,N为样本容量)可知:当滞后阶数小时,2*k/N小,但因为模型的模拟效果会比较差所以L(负值)会比较小,加上负号之后则变得较大,因此最后的AIC有可能较大;,因此T值=回归系数/回归系数的标准误差,因此T值的正负应该与回归系数的正负一致,回归系数的标准误差越大,T值越小,回归系数的估计值越不可靠,越接近于0。即经自由度修正后的可决系数,从计算公式可知调整后的可决系数小于原本的可决系数,并且可决系数可能为负,此时说明模型极不可靠。原创 2022-11-07 14:58:10 · 15815 阅读 · 0 评论 -
多组两两比较用什么检验方法
1.t检验:两独立样本均数的比较。2.LSD检验:多个均数之间的两两比较,LSD为最小显著差异(least significant difference)t检验,适用于某一或几对在专业上有非凡价值的均数间差别的比较,提供P值。3.SNK-q检验:适用于多个均数的两两比较,常用于探索性检验,只告诉有无差异,不提供精确P值。S-N-K方法是一种有效划分相似性子集的方法。该方法适合于各水平观测值个数相等的情况。4.Dunnett-t检验:适用于几个实验组和对照组的比较。5.其他Bonferroni翻译 2022-11-07 11:17:44 · 9128 阅读 · 0 评论 -
方差分析、T检验、卡方分析|LSD检验可用于方差同质性检验|LSD检验法与t检验相比的优点
如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。而方差分析和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女。原创 2022-11-07 10:37:56 · 9975 阅读 · 0 评论 -
高维列联表
(2)其中,在计算男生录取比例时,录取比例高的专业权重大,录取比例低的专业权重小,导致男生总的录取比例偏高;分层与压缩相类似地,都可以按照不同的属性压缩或者分层,一般地,按属性A分层,可以分成r个二维c×t列联表;(也可以合并“呼吸情况”的数据,得到“年龄与吸烟情况”的二维表/合并“吸烟情况”的数据,得到“年龄与呼吸情况”的二维表) ,称为。上述三维2×2×2列联表,可以通过按年龄分层,别离出两张二维列联表,即两个局部表。对不完备高维列联表独立性的定义与完备列联表的情形类似,不同的仅仅是定义在非空格上;原创 2022-09-29 20:24:47 · 3052 阅读 · 0 评论