目录
1.概况
差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析、T检验和卡方检验。
X数据类型 | X组别 | Y数据类型 | 分析方法 |
定类 | 2组或多组 | 定量 | 方差 |
定类 | 仅2组 | 定量 | T检验 |
定类 | 2组或多组 | 定类 | 卡方 |
核心区别在于:数据类型不同,如果是定类和定类之间,此时应该使用卡方分析,如果是定类和定量之间,此时应该使用方差分析或者T检验。
而方差分析和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女。如果X为3个类别比如本科以下,本科,本科以上;此时只能使用方差分析。
2.方差分析
根据X的不同,方差分析又可以进行细分。X的个数为一个时,我们称之为单因素方差;X为2个时则为双因素方差;X为3个时则称作三因素方差,依次下去。当X超过1个时,统称为多因素方差。
2.1单因素
单因素方差分析,用于分析定类数据与定量数据之间的关系情况。在使用单因素方差分析时,需要每个选项的样本量大于30,比如男性和女性样本量分别是100和120,如果出现某个选项样本量过少时应该首先进行组别合并处理,比如研究不同年龄组样本对于研究变量的差异性态度时,年龄小于20岁的样本量仅为20个,那么需要将小于20岁的选项与另外一组(比如20~25岁)的组别合并为一组,然后再进行单因素方差分析。
如果选项无法进行合并处理,比如研究不同专业样本对于变量的态度差异,研究样本的专业共分为市场营销、心理学、教育学和管理学四个专业,这四个专业之间为彼此独立无法进行合并组别,但是市场营销专业样本量仅为20并没有代表意义,因此可以考虑首先筛选出市场营销专业,即仅比较心理学,教育学和管理学这三个专业对某变量的差异性态度,当对比的组别超过三个,并且呈现出显著性差异时,可以考虑使用事后检验进一步对比具体两两组别间的差异情况。
2.2双因素
双因素方差分析,用于分析定类数据(2个)与定量数据之间的关系情况,例如研究人员性别,学历对于网购满意度的差异性;以及男性或者女性时,不同学历是否有着网购满意度差异性;或者同一学历时,不同性别是否有着网购满意度差异性。
2.3多因素
多因素方差分析通常用于类实验式问卷研究。在方法选择上,问卷研究通常会使用方差分析,但某些专业,比如心理学、教育学或者师范类专业等涉及到实验研究时,更多会使用T检验进行分析,另外方差分析与T检验还有较多差异,在某些分析中只能使用其中一种。
3.T检验
T检验共分为三种方法,分别是独立样本T检验,配对样本T检验和单样本T检验。
3.1独立样本T检验
独立样本T检验和单因素方差分析功能上基本一致,但是独立样本T检验只能比较两组选项的差异,比如男性和女性。相对来讲,独立样本T检验在实验比较时使用频率更高,尤其是生物、医学相关领域。针对问卷研究,如果比较的类别为两组,独立样本T检验和单因素方差分析均可实现,研究者自行选择使用即可。
3.2配对样本T检验
独立样本T检验和配对样本T检验功能上都是比较差异,而且均是比较两个组别差异。但二者有着实质性区别,如果是比较不同性别,婚姻状况(已婚和未婚)样本对某变量的差异时,应该使用独立样本T检验。如果比较组别之间有配对关系时,只能使用配对样本T检验,配对关系是指类似实验组和对照组的这类关系。另外独立样本T检验两组样本个数可以不相等,而配对样本T检验的两组样本量需要完全相等,并且独立样本T检验与配对样本T检验时在SPSS的数据放置格式不同。
3.3单样本T检验
T检验的第三种分析方法为单样本T检验。比如问卷某题项选项表示为1分代表非常不满意,2分代表比较不满意,3分代表一般,4分代表比较满意,5分代表非常满意,当分析样本对此题项的态度是否有明显的倾向,比如明显高于3分或者明显低于3分时,即可以使用单样本T检验。单样本T检验是比较某个题项的平均得分是否与某数字(例子是与3进行对比)有着明显的差异,如果呈现出显著性差异,即说明明显该题项平均打分明显不等于3分。此分析方法在问卷研究中较少使用,平均得分是否明显不为3分可以很直观的看出,而不需要单独进行检验分析。三种T检验均可在SPSS分析方法中找到并使用。
4.卡方分析
卡方检验用于分析定类数据与定类数据之间的关系情况。例如研究人员想知道两组学生对于手机品牌的偏好差异情况,则应该使用卡方分析。卡方是通过分析不同类别数据的相对选择频数和占比情况,进而进行差异判断,单选题或多选题均可以使用卡方分析进行对比差异分析。
5.LSD法
LSD为最小显著差异(least significant difference)t检验,适用于某一对或几对在专业上有非凡价值的均数间差别的比较。提供p值。由Fisher最先提出,本质上是一种t检验。通常用于1对或者几对专业上有特殊意义的样本均数间的比较。
为了更好的理解LSD法的计算原理,我们首先回顾两独立样本T检验:
其中 是两个样本的联合估计的方差 (满足样本方差齐次性的前提下),本质就是组内误差的均方,该统计量服从自由度为
的
分布。
与上述类似,LSD法也进行的是两两比较的t检验。所不同的是,在满足方差齐性的前提下,LSD法采用所有样本的联合方差来估计均数差的标准误,而不是要比较的两个样本的联合方差。以三样本之间均数差异比较为例,其公式为:
LSD法往往计算最小显著差异,即:
当两组均数差大于LSD时,说明差异达到显著的水平,也就可以拒绝零假设,认为两组均数不相等。需要注意的是,LSD法单次比较的检验水准仍然为。LSD法检验的灵敏度最高,但是会因为对比的频数增加使得第一类型错误概率增加。为解决该问题,便出现了Sidak法和Bonferroni法。
6.SNK法
SNK法全称Newman-Keuls或者Student-Newman-Keuls,为student-newman-keuls三人姓氏的缩写,检验统计量为q,亦称q检验,适用于多个均数的两两比较,常用于探索性研究。只告诉有无差异,不提供精确p值。
7.LSD法优点
似乎是LSD法得出的p值稍小,在p值接近0.05的时候,比较轻易得出有统计学差异,而SNK方法得出的p值比较保守,相对不易得出p小于0.05。因而SNK法又不及LSD法灵敏。
8.检验方差同质性
当使用线性模型进行数据分析后,应该检测其残差方差是否同质。
常见检测方法
两个变量:F-test;
多个变量: Bartlet's test, Levene's test ( modified后则成为Brown-Forsythe test),Breusch-Pagan Test, Filigner-Killen's test;
对于随后的所有这些检验,零假设是所有总体方差均相等,替代假设是其中至少有两个不同。因此,小于0.05的p值表明方差显着不同,并且违反了方差假设的同质性;
最常用的检测算法为Levene's test,因为它对偏离正态性不敏感。
文章参考