[5]PCB设计实验|卷积神经网络基础|零基础入门深度学习(4) 卷积神经网络|14:00~14:55

资料来源:零基础入门深度学习(4) - 卷积神经网络 - 作业部落 Cmd Markdown 编辑阅读器 

目录

1. Relu激活函数

2. 全连接网络VS卷积网络

3. 卷积神经网络

3.1 网络架构 

3.2 三维的层结构 

4. 卷积神经网络输出值的计算 

5. Pooling层输出值的计算 

6. 全连接层 

7. 卷积神经网络的训练 

8. Pooling层的训练 

9. Mean Pooling误差项的传递 


1. Relu激活函数

  

2. 全连接网络VS卷积网络

 3. 卷积神经网络

3.1 网络架构 

3.2 三维的层结构 

4. 卷积神经网络输出值的计算 

 

上面的计算过程中,步幅(stride)为1。步幅可以设为大于1的数。例如,当步幅为2时,Feature Map计算如下: 

5. Pooling层输出值的计算 

6. 全连接层 

7. 卷积神经网络的训练 

 

8. Pooling层的训练 

9. Mean Pooling误差项的传递 

     


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值