目录
1. Relu激活函数
2. 全连接网络VS卷积网络
3. 卷积神经网络
3.1 网络架构
3.2 三维的层结构
4. 卷积神经网络输出值的计算
上面的计算过程中,步幅(stride)为1。步幅可以设为大于1的数。例如,当步幅为2时,Feature Map计算如下:
5. Pooling层输出值的计算
6. 全连接层
7. 卷积神经网络的训练
8. Pooling层的训练
9. Mean Pooling误差项的传递
目录
上面的计算过程中,步幅(stride)为1。步幅可以设为大于1的数。例如,当步幅为2时,Feature Map计算如下: