✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
步进频波形雷达(Stepped Frequency Continuous Wave, SFCW)是一种常用的雷达信号设计和处理技术,用于雷达定位。以下是基于步进频波形雷达的定位算法的基本原理:
-
发射步进频波形:SFCW雷达通过在一定频率范围内连续发射频率递增或递减的信号,称为步进频波形。频率范围和步进的大小取决于具体的应用场景和性能要求。
-
接回波信:接收到目标物体反射回来的回波信号,包含了目标物体与雷达之间的距离和其他特征信息。
-
目标回波信号处理:对接收到的回波信号进行处理,主要包括功率计算和频谱分析。这可以通过幅度测量和快速傅里叶变换(FFT)等方法实现。
-
距离估计:根据回波信号的到达时间(从发射到接收之间的延迟)计算目标与雷达之间的距离。假设光速已知,则距离可以通过乘以光速和延迟时间得到。
-
定位估计:结合雷达的位置和接收到的目标距离信息,采用三角方法来估计目标的二维或三维位置。可应用于跟踪等应用。
需要注意的是,步进频波形涉及到相干信号处理、回波信号分离等技术,以提高距离测量的精度和抑制多径干扰等。此外,对于多目标的情况,可能需要采取目标识别和跟踪算法,以区分和跟踪不同的目标。步进频波形雷达算法在实际应用中已得到广泛应,并在车辆安全、人体检测等领域发挥了重要作用。
⛄ 部分代码
%计算并画出SFW的合成HRR像
%该函数使用长度为步长两倍的逆傅里叶变化IFFT
function [hl] = hrr_profile(nscat,scat_range,scat_rcs,n,deltaf,prf,v,rnote,winid)
%nscat组成目标散射体的个数
%scat_range包含散射体距离的向量
%scat_rcs 包含散射体RCS的向量
%n步进数
%deltaf步进频率
%prf SFW的PRF
%v 目标速度
%rnote 像起始距离
%winid > 0为汉明窗 <0不加窗
%hl 距离像:是指目标散射中心在雷达视线上的投影,反映目标各散射中心间的径向位置关系,体现目标的部分结构特征,是雷达感知、识别目标的重要途径。
c = 3e8; %光速
num_pulses = n; %步进数
SNR_dB = 40;
nfft = 256; %IFFT点数
carrier_freq = 9.5e9; %载波频率
freq_step = deltaf; %步进频率
V = v; %雷达速度
PRI = 1./prf; %脉冲重复间隔
if (nfft>2*num_pulses)
num_pulses = nfft/2;
end
%初始化矩阵
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
IQ_freq_domain = zeros((2*num_pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_IQ_freq_domain = zeros((2*num_pulses),1);
Weighted_IQ_time_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
taur = 2.*rnote/c; %起始时间延迟
for jscat = 1:nscat
ii = 0;
for i = 1:num_pulses
ii = ii + 1;
rec_freq = ((i-1)*freq_step); %fi
%实数分量 利用欧拉公式
Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat))*cos(-2*pi*rec_freq*(2.*scat_range(jscat)/c-2*(V/c)*((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
%虚部分量
Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))*sin(-2*pi*rec_freq*(2.*scat_range(jscat)/c-2*(V/c)*((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
end
end
if (winid >= 0) %加汉明窗
window(1:num_pulses) = hamming(num_pulses);
else
window(1:num_pulses) = 1;
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses).*window';
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).*window';
Weighted_IQ_freq_domain(1:num_pulses) = Weighted_I_freq_domain + Weighted_Q_freq_domain*j; %虚部和实部的合并
Weighted_IQ_freq_domain(num_pulses:2*num_pulses) = 0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain)); %换算时域上
abs_Weighted_IQ_time_domain = abs(Weighted_IQ_time_domain);
dB_abs_Weighted_IQ_time_domain = 20*log10(abs_Weighted_IQ_time_domain) + SNR_dB;
%计算未定义的范围窗口大小
Ru = c/2/deltaf;
hl = dB_abs_Weighted_IQ_time_domain;
numb = 2*num_pulses;
delx_meter = Ru/numb;
xmeter = 0:delx_meter:Ru-delx_meter;
plot(xmeter,dB_abs_Weighted_IQ_time_domain,'k');
xlabel('相对距离/m');
ylabel('一维距离像');
grid
⛄ 运行结果
⛄ 参考文献
[1] 周沿海,张勇.基于Matlab的步进频率波形与高分辨力距离像[J].现代电子技术, 2007, 30(4):4.DOI:10.3969/j.issn.1004-373X.2007.04.025.
[2] 文心怡,李静,梁广宇,等.基于MATLAB的陆基激光雷达信号分析[J].智能计算机与应用, 2020.DOI:10.3969/j.issn.2095-2163.2020.09.024.
⛳️ 代码获取关注我
❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料
🍅 仿真咨询
1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长