✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
⛄ 内容介绍
小波分析是一种信号处理方法,可以应用于气象数据的分析。它可以提供对时间序列数据的多尺度分析,帮助我们了解信号的频率和时间特征。
在气象数据分析中,小波分析可以用于以下方面:
-
数据去噪:气象数据通常会包含各种噪声,如随机波动或传感器误差。小波分析可以帮助我们从原始数据中提取出真实的信号,去除噪声。
-
频谱分析:小波分析可以提供不同尺度下的频谱信息,帮助我们了解信号的频率成分。通过分析气象数据的频谱,我们可以研究气候变化、季节性变化以及其他周期性变化。
-
时频分析:通过小波变换,我们可以获得信号在时间和频率上的局部特征。这可以帮助我们检测气象数据中的短期变化和突发事件。
-
模式识别:小波分析可以用于检测气象数据中的特定模式或趋势。通过对不同尺度的小波系数进行分析,我们可以找到数据中的重要模式,并对气候现象进行分类和预测。
总之,小波分析在气象数据分析中具有广泛的应用,可以帮助我们更好地理解和利用气象数据。
⛄ 部分代码
%1.xiaozao函数,是需要对标准化的序列进行消除数据噪音分析;
%2.Db3函数,是对数列进行Db3趋势分析;
%3.period函数,是求得时间序列的实部和模的平方。
%其中周期变化图是实部的等值线图
%而小波方差是模的平方的算数平均。
clear
%s=load('D:\data\data.txt'); % 输入n*m 55年*84站
%path_out5 = 'D:\xiaoboshuchu\'
load 暴雨量.mat
start_year=1958
a=s(:,1);
b=zscore(a);
scales=[1:1:32];
%进行连续小波变换得到小波系数矩阵,选择复morlet小波函数
wf=cwt(b,scales,'cmor1-1'); %计算小波系数
shibu=real(wf);% 求得系数的实部
mo=abs(wf); %计算小波系数模的绝对值
mofang=mo.^2; %计算小波系数的模方
fangcha=mean(mofang,2); %计算小波方差,小波方差是模的平方的算数平均
%**********画小波实部*************
figure(1);
j = j + 1;
% subplot(121);
% axis([1961,2015,0,50]);
width=713;%宽度,像素数
height=493;%高度
left=300;%距屏幕左下角水平距离
bottem=200;%距屏幕左下角垂直距离
set(gcf,'position',[left,bottem,width,height])
⛄ 运行结果
⛄ 参考文献
[1] 吕晶晶.MATLAB与Origin数据传递在气象数据分析中的应用[J].高教学刊, 2015(19):2.DOI:CNKI:SUN:GJXK.0.2015-19-129.
[2] 姚清晨,张红.基于小波分析的太原市空气质量变化特征及预测[J].山西大学学报:自然科学版, 2019, 42(1):10.DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2018.04.28.005.