Matlab实现基于K折交叉验证GA-GRNN遗传算法优化广义回归神经网络模型

本文介绍了如何运用遗传算法优化广义回归神经网络(GRNN),通过模拟自然选择和遗传机制,提高数据回归预测的性能。重点讲解了遗传算法的基本原理、与GRNN结合的方法、适应度函数设计以及代码实现过程。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在数据科学和机器学习领域,数据回归预测是一个非常重要的任务,它可以帮助我们预测未来的趋势和走势。而在实际应用中,我们常常需要使用一些优化算法来提高回归模型的性能。遗传算法是一种常用的优化算法,它模拟了自然选择和遗传机制,可以帮助我们找到最优的参数组合。

而广义回归神经网络(GRNN)是一种基于概率密度函数的回归模型,它具有快速的训练速度和良好的泛化能力。因此,将遗传算法与GRNN相结合,可以更好地优化模型,提高预测性能。

首先,我们需要了解遗传算法的基本原理。遗传算法是一种模拟自然选择和遗传机制的优化算法,它通过不断迭代和交叉变异,逐步优化参数组合,直到找到最优解。在使用遗传算法优化GRNN时,我们可以将GRNN的参数作为个体,通过交叉和变异操作,不断演化出更优秀的参数组合。

接下来,我们需要考虑如何将遗传算法与GRNN相结合。首先,我们需要定义适应度函数,用于评价每个个体的优劣程度。在这里,我们可以使用交叉验证的方法来评估模型的性能,将模型在训练集上的误差作为适应度函数的值。然后,我们需要定义选择、交叉和变异等遗传算法的操作,通过不断迭代,逐步优化参数组合。

最后,我们需要实现遗传算法优化GRNN的代码。在这里,我们可以使用Python等编程语言,利用现有的遗传算法库和GRNN库,快速实现优化过程。通过大量的实验和调参,我们可以找到最优的参数组合,从而提高GRNN模型的预测性能。

总之,遗传算法优化GRNN是一种非常有效的数据回归预测方法,它可以帮助我们快速优化模型,提高预测性能。在实际应用中,我们可以根据具体的问题和数据特点,灵活选择适当的参数和操作,从而实现更加精准的数据回归预测。希望本文的介绍能够帮助大家更好地理解和应用遗传算法优化GRNN。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 倪贤达,杨得航,左桐,等.基于遗传算法改进GRNN神经网络的施肥量预测研究[J].  2020.

[2] 杨道广.基于GRNN和SVM的GDI涡轮增压发动机性能预测及优化[D].重庆大学,2019.

[3] 杨瑞芳,周毅英.基于混沌遗传算法优化GRNN模型的珠三角高速公路软土路基沉降预测[J].公路工程, 2015, 40(6):4.DOI:JournalArticle/5b3b6513c095d70f0071dd23.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值