✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
光学干涉成像是一种无透镜成像技术,它利用光波的干涉特性来重建被测物体的图像。与传统的透镜成像技术相比,光学干涉成像具有许多优点,例如成像分辨率高、成像速度快、成像成本低等。然而,光学干涉成像也存在一些挑战,例如成像过程中的相位噪声和散斑噪声等。
为了解决这些挑战,近年来,非凸优化方法在光学干涉成像领域得到了广泛的应用。非凸优化方法能够有效地处理相位噪声和散斑噪声,从而提高光学干涉成像的图像质量。
非凸优化方法在光学干涉成像中的应用
非凸优化方法在光学干涉成像中的应用主要体现在以下几个方面:
-
相位噪声抑制:相位噪声是光学干涉成像中的一种主要噪声源,它会降低图像的质量。非凸优化方法能够有效地抑制相位噪声,从而提高图像质量。
-
散斑噪声抑制:散斑噪声是光学干涉成像中另一种主要噪声源,它会使图像产生斑点状的噪声。非凸优化方法能够有效地抑制散斑噪声,从而提高图像质量。
-
图像重建:图像重建是光学干涉成像中的一个关键步骤,它将干涉图重建为被测物体的图像。非凸优化方法能够有效地解决图像重建问题,从而提高图像质量。
📣 部分代码
function [M_s, M_s_conj, M_s_zero, M_s_large, M1, M2, M3, M_p,count] = ...
create_mask_freq_selection_power_bi(Ti,n,m,M_b,u_lf,seed,c)
% c : vector position of 0 freq
% u_lf : low frequency proprotion in bispectrum
count = 0;
Ti = Ti(1:end-1,:) ;
[mask_ind,M_p] = generate_idx_mask(n,m, unique(Ti(:)) ) ;
mask = zeros(n*m,1) ;
mask(mask_ind) = 1 ;
M_s_large = reshape(mask,n,m) ;
% figure, imagesc(M_s_large)
M_s = zeros(n,m) ;
M_s(:, 1:m/2) = M_s_large(:, 1:m/2) ;
M_s(1:n/2+1, m/2+1) = M_s_large(1:n/2+1, m/2+1) ;
% % % figure, imagesc(M_s)
M_s_conj = zeros(n,m) ;
M_s_conj(:, m/2+2:end) = M_s_large(:, m/2+2:end) ;
M_s_conj(n/2+1:end, m/2+1) = M_s_large(n/2+1:end, m/2+1) ;
% % % figure, imagesc(M_s_conj)
M_s_large(n/2+1, m/2+1) = 1 ;
M_s_zero = zeros(n,m) ;
M_s_zero(n/2+1, m/2+1) = 1 ;
M_s = logical(M_s) ;
M_s_conj = logical(M_s_conj) ;
M_s_zero = logical(M_s_zero) ;
% select bispectra -------------------------------------------------------
T = zeros(M_b,3) ;
i0 = 1 ;
% select bispectra from low freq.
M_hf = floor(u_lf*n*m) ;
if M_hf < 2*M_p
[ ~, Tib ] = mask_1D_select_freq( n,m,u_lf, 1/20, seed, c ) ;
Tib = Tib(1:end-1,:) ;
mask_ind_hf = generate_idx_mask(n,m, unique(Tib(:)) ) ;
mask_ind_hf = intersect(mask_ind_hf, mask_ind) ;
mask_hf = zeros(n*m,1) ;
mask_hf(mask_ind_hf) = 1 ;
M_hf = max(size(mask_ind_hf)) ;
while 1
Idx = randperm(M_hf) ;
for j =1:length(Idx)-2
idx = Idx(j:j+2) ;
idx = sort(mask_ind_hf(idx))' ;
if idx(1)~=c && idx(2)~=c && idx(3)~=c
if sum(ismember(idx,T,'rows')) == 0
if ~(nnz(find(idx(1) == T)) && nnz(find(idx(2) == T)) && nnz(find(idx(3) == T)))
count = count + 1;
end
T(i0,:) = idx ;
i0 = i0+1 ;
end
end
if i0>floor(0.9*M_b)
break
end
end
if i0>floor(0.9*M_b)
break
end
end
end
% select remaining bispectra
for i = i0:M_b
idx = [c,c,c] ;
while idx(1)==c || idx(2)==c || idx(3)==c
while 1
idx = sort(randperm(M_p*2,3)) ;
idx = mask_ind(idx)' ;
if sum(ismember(idx,T,'rows')) == 0
break
end
end
end
if ~(nnz(find(idx(1) == T)) && nnz(find(idx(2) == T)) && nnz(find(idx(3) == T)))
count = count + 1;
end
T(i,:) = idx ;
end
% build vectors of indices for bispectrum ---------------------------------
M1 = 0*T(:,1) ;
M2 = 0*T(:,2) ;
M3 = 0*T(:,3) ;
for i =1:M_b
M1(i) = sum(mask(1:T(i,1))) ;
M2(i) = sum(mask(1:T(i,2))) ;
M3(i) = sum(mask(1:T(i,3))) ;
end
end
function [mask_ind,M_p] = generate_idx_mask(n,m, mask_ind_inf )
% frequency space sampling: symmetry
mask = zeros(n*m,1) ;
mask(mask_ind_inf) = 1 ;
mask = reshape(mask,n,m) ;
Mask = zeros(n+1,m+1) ;
Mask(1:end-1,1:end-1) = mask ;
Mask = fliplr(flipud(Mask)) ;
mask = Mask(1:end-1,1:end-1) ;
% % % figure, imagesc(mask)
mask = mask(:) ;
mask_ind_sup = find(mask==1) ;
% frequency space sampling
mask_ind = [mask_ind_inf;mask_ind_sup] ;
% number of powerspectra
M_p = length(mask_ind_inf) ;
end
⛳️ 运行结果
非凸优化方法在光学干涉成像中的挑战
非凸优化方法在光学干涉成像中的应用也面临着一些挑战,例如:
-
计算复杂度高:非凸优化方法的计算复杂度通常较高,这使得它们在实际应用中受到限制。
-
鲁棒性差:非凸优化方法的鲁棒性通常较差,这使得它们在处理噪声较大的数据时容易出现问题。
-
收敛速度慢:非凸优化方法的收敛速度通常较慢,这使得它们在实际应用中需要较长的时间。
总结
非凸优化方法在光学干涉成像领域得到了广泛的应用,并且取得了很好的效果。然而,非凸优化方法在实际应用中也面临着一些挑战。随着研究的深入,这些挑战有望得到解决,从而进一步提高光学干涉成像的图像质量。
🔗 参考文献
[1] 洪小苗.双CGH检测凸非球面研究[D].苏州大学,2012.DOI:10.7666/d.y2122139.
[2] 王孝坤,郑立功,张学军.子孔径拼接干涉检测凸非球面的研究[J].光学学报, 2010(7):5.DOI:10.3788/gzxb20114001.0092.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类