光学干涉成像的非凸优化方法附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

光学干涉成像是一种无透镜成像技术,它利用光波的干涉特性来重建被测物体的图像。与传统的透镜成像技术相比,光学干涉成像具有许多优点,例如成像分辨率高、成像速度快、成像成本低等。然而,光学干涉成像也存在一些挑战,例如成像过程中的相位噪声和散斑噪声等。

为了解决这些挑战,近年来,非凸优化方法在光学干涉成像领域得到了广泛的应用。非凸优化方法能够有效地处理相位噪声和散斑噪声,从而提高光学干涉成像的图像质量。

非凸优化方法在光学干涉成像中的应用

非凸优化方法在光学干涉成像中的应用主要体现在以下几个方面:

  • 相位噪声抑制:相位噪声是光学干涉成像中的一种主要噪声源,它会降低图像的质量。非凸优化方法能够有效地抑制相位噪声,从而提高图像质量。

  • 散斑噪声抑制:散斑噪声是光学干涉成像中另一种主要噪声源,它会使图像产生斑点状的噪声。非凸优化方法能够有效地抑制散斑噪声,从而提高图像质量。

  • 图像重建:图像重建是光学干涉成像中的一个关键步骤,它将干涉图重建为被测物体的图像。非凸优化方法能够有效地解决图像重建问题,从而提高图像质量。

📣 部分代码

function [M_s, M_s_conj, M_s_zero, M_s_large, M1, M2, M3, M_p,count] = ...         create_mask_freq_selection_power_bi(Ti,n,m,M_b,u_lf,seed,c)% c : vector position of 0 freq% u_lf : low frequency proprotion in bispectrumcount = 0;Ti = Ti(1:end-1,:) ;[mask_ind,M_p] = generate_idx_mask(n,m, unique(Ti(:)) ) ;mask = zeros(n*m,1) ;mask(mask_ind) = 1 ;M_s_large = reshape(mask,n,m) ;% figure, imagesc(M_s_large)M_s = zeros(n,m) ;M_s(:, 1:m/2) = M_s_large(:, 1:m/2) ;M_s(1:n/2+1, m/2+1) = M_s_large(1:n/2+1, m/2+1) ;% % % figure, imagesc(M_s)M_s_conj = zeros(n,m) ;M_s_conj(:, m/2+2:end) = M_s_large(:, m/2+2:end) ;M_s_conj(n/2+1:end, m/2+1) = M_s_large(n/2+1:end, m/2+1) ;% % % figure, imagesc(M_s_conj)M_s_large(n/2+1, m/2+1) = 1 ;M_s_zero = zeros(n,m) ;M_s_zero(n/2+1, m/2+1) = 1 ;M_s = logical(M_s) ;M_s_conj = logical(M_s_conj) ;M_s_zero = logical(M_s_zero) ;% select bispectra -------------------------------------------------------T = zeros(M_b,3) ;i0 = 1 ;% select bispectra from low freq.M_hf = floor(u_lf*n*m) ;if M_hf < 2*M_p[ ~, Tib ] = mask_1D_select_freq( n,m,u_lf, 1/20, seed, c ) ;Tib = Tib(1:end-1,:) ;mask_ind_hf = generate_idx_mask(n,m, unique(Tib(:)) ) ;mask_ind_hf = intersect(mask_ind_hf, mask_ind) ;mask_hf = zeros(n*m,1) ;mask_hf(mask_ind_hf) = 1 ;M_hf = max(size(mask_ind_hf)) ;while 1Idx = randperm(M_hf) ;for j =1:length(Idx)-2idx = Idx(j:j+2) ;idx = sort(mask_ind_hf(idx))' ;if idx(1)~=c && idx(2)~=c && idx(3)~=cif sum(ismember(idx,T,'rows')) == 0 if ~(nnz(find(idx(1) == T)) && nnz(find(idx(2) == T)) && nnz(find(idx(3) == T)))    count = count + 1;endT(i0,:) = idx ;i0 = i0+1 ;endendif i0>floor(0.9*M_b)    breakendendif i0>floor(0.9*M_b)     breakendendend% select remaining bispectrafor i = i0:M_bidx = [c,c,c] ;while idx(1)==c || idx(2)==c || idx(3)==cwhile 1idx = sort(randperm(M_p*2,3)) ;idx = mask_ind(idx)' ;if sum(ismember(idx,T,'rows')) == 0     breakendendendif ~(nnz(find(idx(1) == T)) && nnz(find(idx(2) == T)) && nnz(find(idx(3) == T)))    count = count + 1;endT(i,:) = idx ;end% build vectors of indices for bispectrum ---------------------------------M1 = 0*T(:,1) ;M2 = 0*T(:,2) ;M3 = 0*T(:,3) ;for i =1:M_bM1(i) = sum(mask(1:T(i,1))) ;M2(i) = sum(mask(1:T(i,2))) ;M3(i) = sum(mask(1:T(i,3))) ;endendfunction [mask_ind,M_p] = generate_idx_mask(n,m, mask_ind_inf )% frequency space sampling: symmetrymask = zeros(n*m,1) ;mask(mask_ind_inf) = 1 ;mask = reshape(mask,n,m) ;Mask = zeros(n+1,m+1) ;Mask(1:end-1,1:end-1) = mask ;Mask = fliplr(flipud(Mask)) ;mask = Mask(1:end-1,1:end-1) ;% % % figure, imagesc(mask)mask = mask(:) ;mask_ind_sup = find(mask==1) ;% frequency space samplingmask_ind = [mask_ind_inf;mask_ind_sup] ;% number of powerspectraM_p = length(mask_ind_inf) ;end

⛳️ 运行结果

非凸优化方法在光学干涉成像中的挑战

非凸优化方法在光学干涉成像中的应用也面临着一些挑战,例如:

  • 计算复杂度高:非凸优化方法的计算复杂度通常较高,这使得它们在实际应用中受到限制。

  • 鲁棒性差:非凸优化方法的鲁棒性通常较差,这使得它们在处理噪声较大的数据时容易出现问题。

  • 收敛速度慢:非凸优化方法的收敛速度通常较慢,这使得它们在实际应用中需要较长的时间。

总结

非凸优化方法在光学干涉成像领域得到了广泛的应用,并且取得了很好的效果。然而,非凸优化方法在实际应用中也面临着一些挑战。随着研究的深入,这些挑战有望得到解决,从而进一步提高光学干涉成像的图像质量。

🔗 参考文献

[1] 洪小苗.双CGH检测凸非球面研究[D].苏州大学,2012.DOI:10.7666/d.y2122139.

[2] 王孝坤,郑立功,张学军.子孔径拼接干涉检测凸非球面的研究[J].光学学报, 2010(7):5.DOI:10.3788/gzxb20114001.0092.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值