✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种新的多目标芒果搜索算法(MOMSA)来处理复杂的优化问题,包括实际工程优化问题。芒果搜索算法(MMA)是最近报道的自然启发超启发算法,它的灵感来自于独特的狩猎行为和性食人魔。该算法采用相同的潜在的MSA收敛机制,结合精英的非支配排序方法来估计帕累托最优解。此外,MOMSA采用拥挤距离机制,以扩大所有目标的最佳解决方案的覆盖面。为了验证其性能,我们进行了29个案例研究,包括20个多目标基准问题(ZTD、DTLZ和CEC2009)和9个工程设计问题。另外,将MOMASA应用到IEE-30总线系统中,解决了八个不同情况下的单目标和多目标最优潮流问题。结果与一些最先进的方法进行了比较,这些方法使用了各种性能指标,如全球通用,MS,IGD和HV。研究结果表明,MOMSA能够有效地平衡融合、多样性和统一性,为决策者解决复杂问题提供了宝贵的见解。为决策者解决复杂问题提供宝贵的见解。为决策者解决复杂问题提供宝贵的见解。
引言
多目标优化问题(MOP)是一种优化问题,其中存在多个相互冲突的目标函数需要同时优化。MOP在现实世界中广泛存在,例如工程设计、资源分配和投资组合优化。传统优化算法通常只能找到单一最优解,而对于MOP,需要找到一组帕累托最优解,即在所有目标函数上都达到平衡的解。
芒果搜索算法(MOMSA)
MOMSA算法是一种基于芒果树生长和繁殖过程的元启发式算法。芒果树是一种常绿乔木,具有广泛的根系、茂盛的树冠和丰富的果实。MOMSA算法模拟了芒果树的生长、开花、授粉和结果过程,将芒果树的特性映射到多目标优化问题中。
MOMSA算法原理
MOMSA算法的基本原理如下:
-
**种群初始化:**随机初始化一组解,称为种群。
-
**生长:**每个解通过变异算子进行生长,产生新的解。
-
**开花:**根据解的适应度选择一部分解进行开花,产生花朵。
-
**授粉:**花朵之间进行交叉授粉,产生新的解。
-
**结果:**授粉产生的新解经过选择,产生新的种群。
-
**进化:**重复上述步骤,直到达到终止条件。
MOMSA算法流程
MOMSA算法的具体流程如下:
-
**种群初始化:**随机初始化一个种群,其中每个解代表一个可能的解决方案。
-
**生长:**对每个解应用变异算子,产生新的解。
-
**开花:**根据解的适应度选择一部分解进行开花,产生花朵。
-
**授粉:**花朵之间进行交叉授粉,产生新的解。
-
**结果:**授粉产生的新解经过选择,产生新的种群。
-
**进化:**重复步骤2-5,直到达到终止条件。
-
**输出:**输出一组帕累托最优解。
MOMSA算法特点
MOMSA算法具有以下特点:
-
**简单易用:**算法原理简单明了,易于实现和应用。
-
**全局搜索能力强:**算法通过随机初始化和变异算子,具有较强的全局搜索能力。
-
**收敛速度快:**算法通过选择和交叉授粉,能够快速收敛到最优解。
-
**鲁棒性好:**算法对参数设置不敏感,具有较好的鲁棒性。
MOMSA算法应用
MOMSA算法已成功应用于解决各种多目标优化问题,包括:
-
工程设计:多目标结构优化、多目标流体动力学优化
-
资源分配:多目标投资组合优化、多目标项目组合优化
-
生物信息学:多目标基因表达分析、多目标蛋白质组学分析
结论
多目标芒果搜索算法(MOMSA)是一种有效且高效的多目标优化算法。MOMSA算法模拟了芒果树的生长和繁殖过程,通过种群进化来搜索最优解。MOMSA算法具有简单易用、全局搜索能力强、收敛速度快和鲁棒性好的特点,已成功应用于解决各种多目标优化问题。
📣 部分代码
%%% Multi-objective Mantis Search Algorithm (MOMSA): A Novel Approach for Engineering Design Problems and Validation
%% Developed in MATLAB R2019a
clc
clear all
%% Select the test functions
True_Pareto=load('OSY-PF.txt');
D = 6; % Number of decision variables
M = 2; % Number of objective functions
K=M+D;
GEN =1000; % Set the maximum number of generation (GEN)
N =100 ; % Set the population size (N)
ishow = 5;
%OSY optimization problem
UB=[10,10,5,6,5,10];
LB=[0,0,1,0,1,0];
%% Start the evolution process
%% START THE EXECUTION OF THE ALGORITHM
Pareto = MOMSA(D,M, LB,UB,N,GEN,ishow);
Obtained_Pareto= Pareto(:,D+1:D+M); % extract data to plot
Obtained_Pareto=sortrows(Obtained_Pareto,2);
%%%plot
plot(Obtained_Pareto(:,1),Obtained_Pareto(:,2),'bo','LineWidth',0.0001,...
'MarkerEdgeColor','k',...
'MarkerFaceColor','c',...
'MarkerSize',15);
hold on
plot(True_Pareto(:,1),True_Pareto(:,2),'.','color',[0.8290 0.0940 0.00250],'MarkerSize',25);
legend('MOSMA','True PF','FontSize',10);
xlabel('Obj_1','FontSize',10);
ylabel('Obj_2','FontSize',10);
set(gca,'FontSize',10)
%% Metric Value
M_GD=GD_matlab(Obtained_Pareto,True_Pareto);
M_IGD=IGD_matlab(Obtained_Pareto,True_Pareto);
M_HV=HV(Obtained_Pareto,True_Pareto);
M_MS=metric_of_maximum_spread(Obtained_Pareto,True_Pareto);
display(['The GD Metric obtained by MOMSA is : ', num2str(M_GD)]);
display(['The IGD Metric obtained by MOMSA is : ', num2str(M_IGD)]);
display(['The MS Metric obtained by MOMSA is : ', num2str(M_MS)]);
display(['The HV Metric obtained by MOMSA is : ', num2str(M_HV)]);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类