【智能优化算法】多目标芒果搜索算法MOMSA附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种新的多目标芒果搜索算法(MOMSA)来处理复杂的优化问题,包括实际工程优化问题。芒果搜索算法(MMA)是最近报道的自然启发超启发算法,它的灵感来自于独特的狩猎行为和性食人魔。该算法采用相同的潜在的MSA收敛机制,结合精英的非支配排序方法来估计帕累托最优解。此外,MOMSA采用拥挤距离机制,以扩大所有目标的最佳解决方案的覆盖面。为了验证其性能,我们进行了29个案例研究,包括20个多目标基准问题(ZTD、DTLZ和CEC2009)和9个工程设计问题。另外,将MOMASA应用到IEE-30总线系统中,解决了八个不同情况下的单目标和多目标最优潮流问题。结果与一些最先进的方法进行了比较,这些方法使用了各种性能指标,如全球通用,MS,IGD和HV。研究结果表明,MOMSA能够有效地平衡融合、多样性和统一性,为决策者解决复杂问题提供了宝贵的见解。为决策者解决复杂问题提供宝贵的见解。为决策者解决复杂问题提供宝贵的见解。

引言

多目标优化问题(MOP)是一种优化问题,其中存在多个相互冲突的目标函数需要同时优化。MOP在现实世界中广泛存在,例如工程设计、资源分配和投资组合优化。传统优化算法通常只能找到单一最优解,而对于MOP,需要找到一组帕累托最优解,即在所有目标函数上都达到平衡的解。

芒果搜索算法(MOMSA)

MOMSA算法是一种基于芒果树生长和繁殖过程的元启发式算法。芒果树是一种常绿乔木,具有广泛的根系、茂盛的树冠和丰富的果实。MOMSA算法模拟了芒果树的生长、开花、授粉和结果过程,将芒果树的特性映射到多目标优化问题中。

MOMSA算法原理

MOMSA算法的基本原理如下:

  • **种群初始化:**随机初始化一组解,称为种群。

  • **生长:**每个解通过变异算子进行生长,产生新的解。

  • **开花:**根据解的适应度选择一部分解进行开花,产生花朵。

  • **授粉:**花朵之间进行交叉授粉,产生新的解。

  • **结果:**授粉产生的新解经过选择,产生新的种群。

  • **进化:**重复上述步骤,直到达到终止条件。

MOMSA算法流程

MOMSA算法的具体流程如下:

  1. **种群初始化:**随机初始化一个种群,其中每个解代表一个可能的解决方案。

  2. **生长:**对每个解应用变异算子,产生新的解。

  3. **开花:**根据解的适应度选择一部分解进行开花,产生花朵。

  4. **授粉:**花朵之间进行交叉授粉,产生新的解。

  5. **结果:**授粉产生的新解经过选择,产生新的种群。

  6. **进化:**重复步骤2-5,直到达到终止条件。

  7. **输出:**输出一组帕累托最优解。

MOMSA算法特点

MOMSA算法具有以下特点:

  • **简单易用:**算法原理简单明了,易于实现和应用。

  • **全局搜索能力强:**算法通过随机初始化和变异算子,具有较强的全局搜索能力。

  • **收敛速度快:**算法通过选择和交叉授粉,能够快速收敛到最优解。

  • **鲁棒性好:**算法对参数设置不敏感,具有较好的鲁棒性。

MOMSA算法应用

MOMSA算法已成功应用于解决各种多目标优化问题,包括:

  • 工程设计:多目标结构优化、多目标流体动力学优化

  • 资源分配:多目标投资组合优化、多目标项目组合优化

  • 生物信息学:多目标基因表达分析、多目标蛋白质组学分析

结论

多目标芒果搜索算法(MOMSA)是一种有效且高效的多目标优化算法。MOMSA算法模拟了芒果树的生长和繁殖过程,通过种群进化来搜索最优解。MOMSA算法具有简单易用、全局搜索能力强、收敛速度快和鲁棒性好的特点,已成功应用于解决各种多目标优化问题。

📣 部分代码

%%%  Multi-objective Mantis Search Algorithm (MOMSA): A Novel Approach for Engineering Design Problems and Validation%%  Developed in MATLAB R2019a    clcclear all%% Select the test functionsTrue_Pareto=load('OSY-PF.txt');D = 6; % Number of decision variablesM = 2; % Number of objective functionsK=M+D;GEN =1000;  % Set the maximum number of generation (GEN)N =100 ;      % Set the population size (N)ishow = 5;%OSY optimization problemUB=[10,10,5,6,5,10]; LB=[0,0,1,0,1,0];%% Start the evolution process%%  START  THE  EXECUTION  OF  THE  ALGORITHM Pareto = MOMSA(D,M, LB,UB,N,GEN,ishow);Obtained_Pareto= Pareto(:,D+1:D+M); % extract data to plotObtained_Pareto=sortrows(Obtained_Pareto,2); %%%plotplot(Obtained_Pareto(:,1),Obtained_Pareto(:,2),'bo','LineWidth',0.0001,...          'MarkerEdgeColor','k',...           'MarkerFaceColor','c',...           'MarkerSize',15);hold onplot(True_Pareto(:,1),True_Pareto(:,2),'.','color',[0.8290 0.0940 0.00250],'MarkerSize',25);legend('MOSMA','True PF','FontSize',10);    xlabel('Obj_1','FontSize',10);    ylabel('Obj_2','FontSize',10); set(gca,'FontSize',10)%%  Metric ValueM_GD=GD_matlab(Obtained_Pareto,True_Pareto);M_IGD=IGD_matlab(Obtained_Pareto,True_Pareto);M_HV=HV(Obtained_Pareto,True_Pareto);M_MS=metric_of_maximum_spread(Obtained_Pareto,True_Pareto);display(['The GD Metric obtained by MOMSA is  : ', num2str(M_GD)]);display(['The IGD Metric obtained by MOMSA is : ', num2str(M_IGD)]);display(['The MS Metric obtained by MOMSA is  : ', num2str(M_MS)]);display(['The HV Metric obtained by MOMSA is  : ', num2str(M_HV)]);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值