✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
考虑一辆卡车与一架无人机协同将包裹从仓库运送到一组 n 个分散的客户,或者从客户那里收取包裹并将其运送到卡车上。在这个过程中,我们需要受到时序约束,指定哪些客户需要在哪些其他客户之前得到服务。每个客户都有一个包裹要由无人机投递或拾取,并且卡车被限制在一组停靠点之间行驶。一旦卡车到达停靠点,只要满足有效无人机载荷限制,无人机就会起飞并在其飞行距离内为多个客户提供服务。卡车释放的无人机至少可以从一个停靠点访问每个客户,以确保可以为所有客户提供服务。假设卡车有足够的空间存放需要提取或交付的包裹,并且卡车可以在可以忽略不计的时间内为无人机提供电池,卡车和无人机可以同时移动。目标函数是最小化最后一个客户的服务时间。
📣 部分代码
function [output_args] = PlotResult(data,solution,xRange,yRange)
scatter(data.stoppingPos(1,:),data.stoppingPos(2,:),80,'s','filled','b');hold on;
%根据客户需求不同画不同颜色
for i = 1:data.customerNum
if data.Request(i) == 0 %收取
scatter(data.customerPos(1,i),data.customerPos(2,i),50,'filled','g');
elseif data.Request(i) == 1 %派发
scatter(data.customerPos(1,i),data.customerPos(2,i),50,'filled','r');
end
end
% scatter(data.customerPos(1,:),data.customerPos(2,:),50,'filled');
allNodeSum = data.stoppingNum + data.customerNum;
% for i = 1: allNodeSum
% str = sprintf('%d',i);
% text(data.allPos(1,i)+4,data.allPos(2,i)+8,str);
% end
num = length(solution.route);
start = 1;
% str = sprintf('%d',solution.route(start));
% text(data.allPos(1,solution.route(start))+4,data.allPos(2,solution.route(start))+8,str);
for i =2:num
plot([data.allPos(1,solution.route(i-1)),data.allPos(1,solution.route(i))],...
[data.allPos(2,solution.route(i-1)),data.allPos(2,solution.route(i))],'r','LineWidth',1);
if solution.route(i) <= data.stoppingNum
rendz = i;
plot([data.allPos(1,solution.route(start)),data.allPos(1,solution.route(rendz))],...
[data.allPos(2,solution.route(start)),data.allPos(2,solution.route(rendz))],'LineWidth',2,'Color','b');
start = rendz;
end
end
xlim([-5 400]);
ylim([-5 300]);
hold off;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类