【无人机协同车辆】基于停靠点的NIA算法(NIAS)单卡车协同单无人机多客户外卖配送路径规划(目标函数:最短时间)附Matlab代码

文章探讨了使用智能优化算法解决卡车与无人机协同配送的问题,涉及路径规划、时序约束和负载限制,目标是通过最小化最后一个客户的服务时间。内容包括神经网络预测方法、路径规划策略以及实际的Matlab代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

​考虑一辆卡车与一架无人机协同将包裹从仓库运送到一组 n 个分散的客户,或者从客户那里收取包裹并将其运送到卡车上。在这个过程中,我们需要受到时序约束,指定哪些客户需要在哪些其他客户之前得到服务。每个客户都有一个包裹要由无人机投递或拾取,并且卡车被限制在一组停靠点之间行驶。一旦卡车到达停靠点,只要满足有效无人机载荷限制,无人机就会起飞并在其飞行距离内为多个客户提供服务。卡车释放的无人机至少可以从一个停靠点访问每个客户,以确保可以为所有客户提供服务。假设卡车有足够的空间存放需要提取或交付的包裹,并且卡车可以在可以忽略不计的时间内为无人机提供电池,卡车和无人机可以同时移动。目标函数是最小化最后一个客户的服务时间。

📣 部分代码

function [output_args] = PlotResult(data,solution,xRange,yRange)scatter(data.stoppingPos(1,:),data.stoppingPos(2,:),80,'s','filled','b');hold on;%根据客户需求不同画不同颜色for i = 1:data.customerNum    if data.Request(i) == 0 %收取        scatter(data.customerPos(1,i),data.customerPos(2,i),50,'filled','g');    elseif data.Request(i) == 1 %派发        scatter(data.customerPos(1,i),data.customerPos(2,i),50,'filled','r');    endend% scatter(data.customerPos(1,:),data.customerPos(2,:),50,'filled');allNodeSum = data.stoppingNum + data.customerNum;% for i = 1: allNodeSum%    str = sprintf('%d',i);%    text(data.allPos(1,i)+4,data.allPos(2,i)+8,str);% endnum = length(solution.route);start = 1;% str = sprintf('%d',solution.route(start));% text(data.allPos(1,solution.route(start))+4,data.allPos(2,solution.route(start))+8,str);for i =2:num    plot([data.allPos(1,solution.route(i-1)),data.allPos(1,solution.route(i))],...        [data.allPos(2,solution.route(i-1)),data.allPos(2,solution.route(i))],'r','LineWidth',1);    if solution.route(i) <= data.stoppingNum       rendz = i;       plot([data.allPos(1,solution.route(start)),data.allPos(1,solution.route(rendz))],...           [data.allPos(2,solution.route(start)),data.allPos(2,solution.route(rendz))],'LineWidth',2,'Color','b');       start = rendz;    endendxlim([-5 400]);ylim([-5 300]);hold off;end

⛳️ 运行结果

​🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
### 关于电动车与无人机协同配送系统的代码实现 #### 电动车与无人机协同配送系统概述 在现代物流体系中,为了提高效率并减少碳排放,采用电动车辆无人机相结合的方式进行货物配送已成为一种趋势。这种模式不仅能够覆盖更广泛的区域,还能有效应对交通拥堵等问题。 #### 系统设计要点 - **路径规划**:通过遗传算法来优化配送路线,考虑因素包括但不限于距离短、成本低以及满足特定的时间窗口约束[^1]。 - **资源管理**:合理安排每辆车及其配套的无人机数量,在保证服务质量和客户满意度的同时大化利用率。 - **能量消耗模型**:考虑到实际应用场景下的能耗问题,建立精确的能量消耗模型对于评估方案可行性至关重要[^3]. #### MATLAB代码示例 下面给出一段简化版MATLAB代码用于模拟上述场景: ```matlab % 参数初始化 numTrucks = 1; % 卡车数目 numDronesPerTruck = 2; % 每台卡车上配备的无人机数 maxBatteryLifeDrone = 30; % 无人机大续航时间(min) deliveryPoints = rand(10,2); % 随机生成十个送货地点坐标(x,y) function [bestPath,truckRoutes,dronePaths]=truck_drone_delivery() bestFitness = Inf; for i=1:numTrucks truckRoute{i}=[]; dronePathCell={}; % 对每一个卡车执行如下操作... for j=1:length(deliveryPoints)-1 % 计算当前节点到下一个节点的距离矩阵 distanceMatrix=pdist2([truckPosition(i,:); deliveryPoints], ... [truckPosition(i,:); deliveryPoints]); % 使用遗传算法找到优路径组合 options = gaoptimset('PopulationSize',50,'Generations',100); [path,fval] = gamultiobj(@(x)objectiveFunction(x,distanceMatrix),length(deliveryPoints)+1,... [],[],[],[],zeros(length(deliveryPoints)+1,1),ones(length(deliveryPoints)+1,1)*Inf,[],options); if fval<bestFitness bestFitness=fval; bestPath=path; % 更新卡车行驶轨迹及对应无人机飞行路径 updateVehicleAndDroneRoutes(path,i,numDronesPerTruck,maxBatteryLifeDrone,@calculateEnergyCost); end end truckRoutes{end+1}=truckRoute{i}; %#ok<SAGROW> dronePaths{end+1}=dronePathCell;%#ok<SAGROW> end function cost=objectiveFunction(route,distances) totalDistance=sum(distances(sub2ind(size(distances),route,circshift(route,-1)))); cost=-totalDistance; % 负号表示我们要找的是小化目标函数值的结果 end function calculateEnergyCost(vehicleType,distanceOrTime) switch vehicleType case 'truck' energyConsumption=distanceOrTime*0.2; % 假设位公里耗电量为0.2度电 case 'drone' energyConsumption=(distanceOrTime/maxBatteryLifeDrone)^2 * 0.5; % 简化的二次方程估算方法 end cost=energyConsumption; end function updateVehicleAndDroneRoutes(bestSolutionIndex,currentTruckID,numOfDrones,batteryLimit,calculationFunc) % 此处省略具体逻辑细节,主要涉及如何根据佳解决方案索引更新各运输工具的工作计划表, % 同时确保所有任务都能按时完成且不超过任何设备的能力极限 end end ``` 这段程序展示了如何构建一个简的框架来进行电动车与无人机之间的协作调度决策过程。需要注意的是,这里仅提供了一个非常基础的概念验证版本,真实世界的应用可能会更加复杂,涉及到更变量和技术考量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值