✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. OFDM 系统简介
正交频分复用 (OFDM) 是一种数字调制技术,将高比特率数据流分成多个较低比特率的子载波,并在不同的频率上传输。OFDM 系统具有抗多径衰落和窄带干扰的能力,因此广泛应用于无线通信系统中。
2. 频域信道估计
在 OFDM 系统中,信道估计是至关重要的,它可以估计出信道的频率响应,从而补偿信道失真,提高系统性能。频域信道估计是在频域中进行信道估计,它通过已知的导频信号和接收到的信号来估计信道频率响应。
3. LS 算法
最小二乘 (LS) 算法是一种经典的信道估计算法,它通过最小化均方误差来估计信道频率响应。LS 算法的数学模型如下:
H = (X^H X)^-1 X^H Y
其中:
-
H 是信道频率响应
-
X 是导频信号矩阵
-
Y 是接收信号矩阵
4. 基于 LS 算法的 OFDM 系统频域信道估计步骤
基于 LS 算法实现 OFDM 系统频域信道估计的步骤如下:
-
**生成导频信号:**生成一个已知的导频信号序列,该序列通常是伪随机序列或正交序列。
-
**发送导频信号:**将导频信号发送到信道中。
-
**接收信号:**在接收端接收导频信号和数据信号。
-
**构造导频信号矩阵和接收信号矩阵:**将导频信号和接收信号按照一定的格式构造为矩阵 X 和 Y。
-
**计算信道频率响应:**使用 LS 算法公式计算信道频率响应 H。
-
**补偿信道失真:**根据估计出的信道频率响应,对接收到的数据信号进行补偿,消除信道失真。
. 总结
基于 LS 算法实现 OFDM 系统频域信道估计是一种简单有效的方法,它能够准确估计信道频率响应,提高 OFDM 系统的性能。LS 算法易于实现,计算复杂度低,因此在实际应用中得到广泛使用。
📣 部分代码
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%此函数完成功能 利用LS算法对OFDM系统进行频域信道估计
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%64个载波,子载波间隔为1.25MHZ,带宽共为80MHZ,积分周期为0.8e-6s.采样时间间隔为0.0125e-6s.数据进行QPSK调制
%仿真环境为准静态,没有直达径且为瑞利分布环境
%
clear,clc;
N=64; %子载波个数
profix=16; %循环前缀共16个点
L=1; %多径数目
N_OFDM=400; %一帧数据所包含的OFDM符号数
N_location=16; %一帧数据内插入导频的位置
SNR_DB=[0 2 4 6 8 10 14 18 20 25 40]; %信躁比
N_SIMULINK=10; %仿真次数
⛳️ 运行结果
🔗 参考文献
[1] 张九龙.基于频域分段的MIMO-OFDM系统信道估计算法实现[J].科技广场, 2014(5):4.DOI:10.3969/j.issn.1671-4792.2014.05.027.
[2] 王萌.基于NGB-W的MIMO-OFDM信道估计及均衡算法研究与FPGA实现[D].西安电子科技大学,2016.DOI:10.7666/d.D01068996.
[3] 金丽芹.DVB-T2中基于导频的信道估计算法研究[D].西安电子科技大学,2014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类