【信道估计】基于LS算法实现OFDM系统频域信道估计附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. OFDM 系统简介

正交频分复用 (OFDM) 是一种数字调制技术,将高比特率数据流分成多个较低比特率的子载波,并在不同的频率上传输。OFDM 系统具有抗多径衰落和窄带干扰的能力,因此广泛应用于无线通信系统中。

2. 频域信道估计

在 OFDM 系统中,信道估计是至关重要的,它可以估计出信道的频率响应,从而补偿信道失真,提高系统性能。频域信道估计是在频域中进行信道估计,它通过已知的导频信号和接收到的信号来估计信道频率响应。

3. LS 算法

最小二乘 (LS) 算法是一种经典的信道估计算法,它通过最小化均方误差来估计信道频率响应。LS 算法的数学模型如下:

 

H = (X^H X)^-1 X^H Y

其中:

  • H 是信道频率响应

  • X 是导频信号矩阵

  • Y 是接收信号矩阵

4. 基于 LS 算法的 OFDM 系统频域信道估计步骤

基于 LS 算法实现 OFDM 系统频域信道估计的步骤如下:

  1. **生成导频信号:**生成一个已知的导频信号序列,该序列通常是伪随机序列或正交序列。

  2. **发送导频信号:**将导频信号发送到信道中。

  3. **接收信号:**在接收端接收导频信号和数据信号。

  4. **构造导频信号矩阵和接收信号矩阵:**将导频信号和接收信号按照一定的格式构造为矩阵 X 和 Y。

  5. **计算信道频率响应:**使用 LS 算法公式计算信道频率响应 H。

  6. **补偿信道失真:**根据估计出的信道频率响应,对接收到的数据信号进行补偿,消除信道失真。

​. 总结

基于 LS 算法实现 OFDM 系统频域信道估计是一种简单有效的方法,它能够准确估计信道频率响应,提高 OFDM 系统的性能。LS 算法易于实现,计算复杂度低,因此在实际应用中得到广泛使用。

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%此函数完成功能 利用LS算法对OFDM系统进行频域信道估计%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%64个载波,子载波间隔为1.25MHZ,带宽共为80MHZ,积分周期为0.8e-6s.采样时间间隔为0.0125e-6s.数据进行QPSK调制%仿真环境为准静态,没有直达径且为瑞利分布环境% clear,clc;N=64;                             %子载波个数profix=16;                        %循环前缀共16个点L=1;                              %多径数目N_OFDM=400;                       %一帧数据所包含的OFDM符号数N_location=16;                     %一帧数据内插入导频的位置SNR_DB=[0 2 4 6 8 10 14 18 20 25 40];   %信躁比N_SIMULINK=10;                    %仿真次数

⛳️ 运行结果

🔗 参考文献

[1] 张九龙.基于频域分段的MIMO-OFDM系统信道估计算法实现[J].科技广场, 2014(5):4.DOI:10.3969/j.issn.1671-4792.2014.05.027.

[2] 王萌.基于NGB-W的MIMO-OFDM信道估计及均衡算法研究与FPGA实现[D].西安电子科技大学,2016.DOI:10.7666/d.D01068996.

[3] 金丽芹.DVB-T2中基于导频的信道估计算法研究[D].西安电子科技大学,2014.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值