【图像去噪】基于脊波变换实现图像去噪附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

1. 概述

图像去噪是图像处理领域一项重要的任务,旨在从图像中去除噪声,提高图像质量。近年来,随着深度学习技术的快速发展,基于深度学习的图像去噪方法取得了显著的成果。然而,深度学习模型通常需要大量的训练数据和计算资源,这对于一些资源受限的场景来说是一个挑战。

脊波变换是一种基于小波变换的信号处理方法,具有良好的时频分析特性和抗噪声能力。近年来,脊波变换在图像去噪领域得到越来越多的关注。本文将介绍基于脊波变换的图像去噪方法,并分析其优缺点。

2. 脊波变换

脊波变换是一种基于小波变换的信号处理方法,它将信号分解成一系列脊波函数的线性组合。脊波函数是一组具有良好时频局部化特性的函数,它们可以有效地捕捉信号的局部特征。

脊波变换的数学表达式如下:

脊波变换具有以下特点:

  • 良好的时频分析特性:脊波函数具有良好的时频局部化特性,可以有效地捕捉信号的局部特征。

  • 抗噪声能力:脊波变换对噪声具有较强的鲁棒性,可以有效地去除噪声。

  • 稀疏性:脊波系数通常是稀疏的,可以有效地压缩信号。

3. 基于脊波变换的图像去噪

基于脊波变换的图像去噪方法通常包括以下步骤:

  • 将图像分解成脊波域

  • 在脊波域对脊波系数进行阈值处理

  • 将处理后的脊波系数重构回图像域

阈值处理是基于脊波变换的图像去噪的关键步骤。阈值处理的目的是去除噪声脊波系数,保留信号脊波系数。阈值处理的方法有很多,例如软阈值处理、硬阈值处理等。

4. 实验结果

为了验证基于脊波变换的图像去噪方法的有效性,我们进行了实验。实验结果表明,该方法可以有效地去除图像噪声,提高图像质量。

5. 结论

基于脊波变换的图像去噪方法是一种有效的方法,可以有效地去除图像噪声,提高图像质量。该方法具有以下优点:

  • 抗噪声能力强

  • 计算效率高

  • 容易实现

然而,该方法也存在一些缺点,例如:

  • 对噪声类型敏感

  • 可能导致图像细节丢失

总而言之,基于脊波变换的图像去噪方法是一种有效的方法,可以应用于各种图像去噪任务。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值