【通信】跳频通信系统抗干扰Matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 概述

跳频通信系统是一种重要的抗干扰技术,它通过在多个频率之间快速切换,使得干扰者难以锁定目标信号,从而提高通信的安全性、可靠性和抗干扰能力。跳频技术广泛应用于军事通信、无线局域网、卫星通信、移动通信等领域。

2. 跳频通信系统的原理

跳频通信系统的基本原理是将要传输的信息信号在多个频率之间进行跳跃,每个频率使用的时间非常短,然后在接收端根据预定的跳频序列进行解调。由于干扰者无法预测信号的跳变频率,因此很难对信号进行有效的干扰。

跳频通信系统主要由以下几个部分组成:

  • 跳频发生器: 负责产生跳频序列,控制信号在不同频率之间的切换。

  • 调制器: 将信息信号调制到载波信号上。

  • 解调器: 在接收端将接收到的信号解调,恢复出原始的信息信号。

  • 同步电路: 确保发送端和接收端使用相同的跳频序列。

3. 跳频通信系统的抗干扰性能

跳频通信系统具有以下几个方面的抗干扰性能:

  • 抗窄带干扰: 由于信号在多个频率之间快速跳跃,窄带干扰只能影响其中一小部分频率,因此对信号的影响很小。

  • 抗宽带干扰: 即使干扰者使用宽带干扰,由于信号在每个频率上停留的时间很短,干扰者也无法有效地干扰信号。

  • 抗截获: 由于信号在多个频率之间跳跃,干扰者很难截获完整的信号,从而提高了通信的安全性。

4. 跳频通信系统的分类

跳频通信系统可以根据不同的分类标准进行分类,常见的分类方法包括:

  • 跳频方式: 直接序列跳频(DSSS)、跳频扩频(FHSS)、时分跳频(TDMA)等。

  • 跳频速率: 慢跳频、快跳频等。

  • 跳频序列: 伪随机序列、伪噪声序列等。

5. 跳频通信系统的应用

跳频通信系统广泛应用于以下几个领域:

  • 军事通信: 由于跳频通信系统具有良好的抗干扰性能,因此在军事通信中得到了广泛的应用,例如军事无线电通信、卫星通信等。

  • 无线局域网: 跳频技术是无线局域网(WLAN)的重要技术之一,例如IEEE 802.11标准就采用了跳频技术。

  • 卫星通信: 跳频技术也应用于卫星通信中,例如卫星电话、卫星电视等。

  • 移动通信: 一些移动通信系统也采用了跳频技术,例如CDMA系统。

6. 总结

跳频通信系统是一种重要的抗干扰技术,它通过在多个频率之间快速切换,使得干扰者难以锁定目标信号,从而提高通信的安全性、可靠性和抗干扰能力。跳频技术广泛应用于军事通信、无线局域网、卫星通信、移动通信等领域。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值