✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
多输入多输出(MIMO)技术在现代无线通信系统中发挥着至关重要的作用,它通过利用多个天线来提高数据速率和系统容量。在MIMO系统中,信号检测是关键环节,其目标是在接收端从接收到的信号中恢复出发送的信号。本文将探讨在瑞利衰落信道下,使用BPSK调制,并采用最大似然(ML)、零迫零(ZF)和最小均方误差(MMSE)三种数字信号检测算法的MIMO系统。
系统模型
信号检测算法
1. 最大似然(ML)检测
2. 零迫零(ZF)检测
3. 最小均方误差(MMSE)检测
仿真结果
为了比较三种检测算法的性能,我们进行了仿真实验。仿真参数如下:
-
发送信号:BPSK调制,数据速率为1 Mbps
-
信道:瑞利衰落信道,信道矩阵元素服从零均值复高斯分布
-
噪声:加性高斯白噪声,方差为�2σ2
-
仿真次数:1000次
仿真结果表明,在低信噪比(SNR)下,ML检测器具有最好的性能,但其计算复杂度较高。ZF检测器在高SNR下表现良好,但其对噪声的敏感度较高。MMSE检测器在各种SNR下都表现出良好的性能,并具有较低的计算复杂度。
结论
本文分析了在瑞利衰落信道下,使用BPSK调制,并采用ML、ZF和MMSE三种数字信号检测算法的MIMO系统。仿真结果表明,MMSE检测器在各种SNR下都具有良好的性能,并具有较低的计算复杂度,因此它在实际应用中更具优势。
⛳️ 运行结果
🔗 参考文献
[1] 张冬玲,杨勇,李静,等.基于Turbo均衡和信道估计的单通道盲信号恢复算法[J].通信学报, 2014, 35(1):8.DOI:10.3969/j.issn.1000-436x.2014.01.006.
[2] Suthisopapan P , Kasai K , Meesomboon A ,et al.Near Capacity Approaching for Large MIMO Systems by Non-Binary LDPC Codes with MMSE Detection[J].Mathematics, 2012.DOI:10.48550/arXiv.1203.0960.
[3] 孙娜娜.拉格朗日乘子估计在MIMO检测中的应用[D].大连理工大学,2014.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类