【信道化】基于带通滤波器实现信道化接收机设计(16通道)附Matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

全息光片,也称为体积显示,是一种新型的光学技术,它利用光波干涉原理,将三维图像信息记录在光敏材料中,并通过激光照射再现出真实的立体图像。与传统的二维显示技术相比,全息光片能够展现出更真实、更逼真的三维影像,为人们带来全新的视觉体验。

1. 全息光片的工作原理

全息光片的核心原理在于光波的干涉现象。当两束相干光波相遇时,会产生干涉条纹,这些条纹记录了物体的光波信息。全息光片的制作过程就是利用激光照射物体,将物体发出的光波与参考光波进行干涉,并将干涉条纹记录在光敏材料上。

在再现过程中,用激光照射全息光片,光波会穿过记录在光片上的干涉条纹,并重新组合成与原始物体相同的光波,从而再现出三维图像。

2. 全息光片的优势

与传统的二维显示技术相比,全息光片具有以下优势:

  • 真实感强: 全息光片能够再现出物体的真实立体形态,观众可以从不同角度观察图像,获得更真实的视觉体验。

  • 空间感强: 全息光片可以将三维图像投影到空间中,观众可以自由移动,从不同的角度观看图像,仿佛置身于真实的环境中。

  • 互动性强: 全息光片可以与观众进行互动,例如通过手势控制图像旋转、缩放等,增强观赏体验。

  • 信息容量大: 全息光片能够记录大量信息,可以用于展示复杂的场景、复杂的物体,甚至可以用于记录和再现动态场景。

3. 全息光片的应用

全息光片技术应用广泛,前景十分广阔,主要应用领域包括:

  • 娱乐: 作为一种新颖的娱乐方式,全息光片可以用于制作电影、游戏、演唱会等,为观众带来更沉浸式的体验。

  • 教育: 全息光片可以用于制作教学课件,将抽象的知识直观地展示出来,提高学习效率。

  • 医疗: 全息光片可以用于制作人体器官模型,帮助医生进行手术模拟和教学,提高医疗水平。

  • 工业: 全息光片可以用于产品设计、质量检测等,提高生产效率和产品质量。

  • 军事: 全息光片可以用于制作模拟训练系统,提高士兵的作战能力。

4. 全息光片的发展趋势

全息光片技术还在不断发展中,未来的发展趋势主要集中在以下几个方面:

  • 分辨率提升: 随着技术进步,全息光片的分辨率不断提升,能够再现更精细的图像细节。

  • 尺寸缩小: 全息光片的尺寸不断缩小,便于携带和使用。

  • 色彩还原: 全息光片的色彩还原能力不断提高,能够更加真实地再现物体的色彩。

  • 应用场景拓展: 全息光片的应用场景不断拓展,将应用于更多领域。

5. 全息光片的未来展望

随着技术的不断发展,全息光片将成为一种重要的信息展示方式,将改变人们的日常生活和工作方式。未来,全息光片将应用于更多领域,为人们带来更美好的生活体验。

总结

全息光片作为一种革命性的光学技术,具有真实感强、空间感强、互动性强、信息容量大等优势,在娱乐、教育、医疗、工业、军事等领域具有广阔的应用前景。随着技术不断发展,全息光片将为人们带来更美好的未来。

⛳️ 运行结果

🔗 参考文献

[1] A. H. Dorrah, P. Bordoloi, V. S. de Angelis, J. O. de Sarro, L. A. Ambrosio, M. Zamboni-Rached, F. Capasso, "Light sheets for continuous-depth holography and three-dimensional volumetric displays," Nat. Photon. (2023).

[2] M. Zamboni-Rached, "Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves," Opt. Express 12, 4001-4006 (2004).

[3] L. A. Ambrosio, "Millimeter-structured nondiffracting surface beams," J. Opt. Soc. Am. B 36, 638-645 (2019).

[4] J. O. de Sarro, L. A. Ambrosio, "Surface beams resistant to diffraction and attenuation and structured at the millimeter scale," J. Opt. Soc. Am. B 38, 677-684 (2021).

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值