【误码率】2DPSK非相干调制解调系统Matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

在数字通信系统中,为了将数字信号转换为适合在信道中传输的模拟信号,需要进行调制。2DPSK(二进制差分相移键控)是一种常见的数字调制方式,其特点是将数据信息编码到相位变化中,而非直接编码到载波信号的相位本身。这种特性使得2DPSK具有抗噪声能力强、实现简单的优点,在无线通信、卫星通信等领域得到广泛应用。本文将深入探讨2DPSK非相干解调系统的误码率性能,并分析影响误码率的关键因素。

2DPSK调制原理

2DPSK调制使用两个相位状态来表示二进制数据:0和1。每个数据位都映射到相位差值,而不是绝对相位。具体来说,如果当前数据位为“0”,则载波相位保持不变;如果数据位为“1”,则载波相位反转180度。因此,2DPSK信号的相位变化取决于当前数据位和前一个数据位的组合。

非相干解调原理

非相干解调是指接收端不使用参考信号来恢复载波相位,而是直接通过比较相邻信号之间的相位差来解调数据。在2DPSK系统中,非相干解调通常采用差分相位检测器来实现。差分相位检测器接收连续的两个信号,并比较它们的相位差。如果相位差为0度,则判定为数据位“0”;如果相位差为180度,则判定为数据位“1”。

误码率分析

2DPSK非相干解调系统的误码率主要受信道噪声的影响。在AWGN(加性高斯白噪声)信道中,误码率可以用以下公式表示:

 

P_e = 1/2 * erfc(sqrt(E_b/N_0))

其中:

  • P_e:误码率

  • erfc:互补误差函数

  • E_b:每个比特的能量

  • N_0:噪声功率谱密度

从公式可以看出,误码率与信噪比(E_b/N_0)呈负相关。信噪比越高,误码率越低。

影响误码率的关键因素

  • **信噪比:**如公式所示,信噪比是影响误码率的关键因素。信噪比越高,误码率越低。

  • **相位噪声:**相位噪声是接收机中产生的载波相位不稳定性。相位噪声会造成相位差检测错误,导致误码率上升。

  • **多径效应:**多径效应是指信号在传播过程中经过多个路径到达接收机,导致信号叠加并产生干扰。多径效应会导致相位差检测错误,进而影响误码率。

  • **码率:**码率是指每秒传输的比特数。码率越高,误码率越高。这是因为码率越高,每个比特的能量越低,信噪比越低。

提高2DPSK非相干解调系统性能的方法

  • **提高信噪比:**可以通过增加发射功率、使用更灵敏的接收机或采用信道编码等方法来提高信噪比。

  • **抑制相位噪声:**可以使用相位锁定环路(PLL)等技术来抑制接收机中的相位噪声。

  • **减少多径效应:**可以使用分集技术、均衡技术等方法来减轻多径效应的影响。

  • **降低码率:**在保证通信质量的前提下,降低码率可以提高信噪比,从而降低误码率。

结论

2DPSK非相干解调系统是一种简单的数字通信系统,其误码率性能受到信噪比、相位噪声、多径效应和码率等因素的影响。通过提高信噪比、抑制相位噪声、减少多径效应和降低码率等方法,可以有效地提高2DPSK非相干解调系统的误码率性能,使其能够满足各种应用场景的需求。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化
、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值