【交叉定位】基于扩展卡尔曼滤波EKF+TDOA+FDOA实现多无人机无源时差定位和频差定位附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

本文旨在探讨基于扩展卡尔曼滤波 (EKF) 结合时差定位 (TDOA) 和频差定位 (FDOA) 的多无人机无源定位技术。该方法通过利用多个无人机接收来自目标信号的时间差和频率差信息,结合EKF的非线性滤波能力,实现对目标位置的精准估计。文章将详细介绍EKF算法原理、TDOA/FDOA测量模型以及基于EKF+TDOA+FDOA的多无人机定位系统实现。同时,还将分析该方法的优势和局限性,以及未来发展方向。

1. 引言

随着无人机技术的快速发展,无人机在各个领域的应用越来越广泛。在许多场景下,例如搜索救援、环境监测、目标跟踪等,都需要对无人机进行精准的定位。传统的 GPS 定位系统虽然较为成熟,但在信号遮蔽或干扰的情况下,定位精度会大幅降低。因此,研究基于无源定位的多无人机系统,具有重要的理论意义和应用价值。

无源定位是指通过接收目标发射的信号,利用信号到达不同接收点的时差或频差信息,来确定目标位置的方法。TDOA 和 FDOA 是两种常用的无源定位技术。TDOA 利用信号到达不同接收点的时间差,而 FDOA 利用信号到达不同接收点的频率差。

EKF 是一种常用的非线性滤波算法,能够有效地处理带有噪声和非线性因素的系统。通过将系统状态方程和观测方程线性化,EKF 可以根据历史数据和当前观测值估计系统状态。

2. EKF 算法原理

EKF 算法的核心思想是将非线性系统通过一阶泰勒展开线性化,从而利用卡尔曼滤波的原理进行状态估计。EKF 的基本步骤如下:

  • 预测步骤: 预测下一时刻的状态和误差协方差矩阵。

  • 更新步骤: 利用观测值更新状态估计和误差协方差矩阵。

3. TDOA/FDOA 测量模型

TDOA 和 FDOA 的测量模型分别如下:

4. 基于 EKF+TDOA+FDOA 的多无人机定位系统实现

基于 EKF+TDOA+FDOA 的多无人机定位系统实现流程如下:

  • 数据采集: 接收机收集目标信号的时间到达信息和频率信息。

  • TDOA/FDOA 测量: 根据接收到的数据,计算目标信号到达不同接收机的时间差和频率差。

  • EKF 滤波: 利用 EKF 算法,根据 TDOA/FDOA 测量值和系统模型,估计目标位置和速度。

  • 定位输出: 输出目标位置和速度的估计值。

5. 优势和局限性

优势:

  • 高精度定位: 结合 TDOA 和 FDOA,可以获得更丰富的定位信息,从而实现更高的定位精度。

  • 非视距定位: 不需要目标信号直接到达接收机,能够实现非视距定位。

  • 抗干扰能力强: 利用多个接收机进行协同定位,可以有效地抑制噪声和干扰的影响。

局限性:

  • 计算量大: EKF 算法需要进行大量的矩阵运算,计算量较大,对硬件性能有一定要求。

  • 非线性模型: TDOA/FDOA 测量模型是非线性的,可能导致 EKF 算法精度下降。

  • 同步问题: 接收机之间需要进行精确的同步,才能保证 TDOA/FDOA 测量的准确性。

6. 未来发展方向

  • 研究更先进的非线性滤波算法,提高定位精度和抗噪声能力。

  • 开发更加高效的算法,降低计算量,提高实时性。

  • 结合其他定位技术,例如 GPS 和惯性导航系统,进一步提高定位精度。

7. 总结

基于 EKF+TDOA+FDOA 的多无人机无源定位技术,是一种能够实现高精度、非视距定位的技术。该技术在搜索救援、环境监测、目标跟踪等领域具有广阔的应用前景。未来,随着算法的不断优化和硬件技术的进步,该技术将会得到更加广泛的应用,为各种应用场景提供更加精准的定位服务。

⛳️ 运行结果

🔗 参考文献

[1] 杜晶,杨玫,吕洁.基于时差频差的无人机群协同定位模型研究[J].舰船电子工程, 2020.DOI:10.3969/j.issn.1672-9730.2020.07.015.

[2] 蒋伊琳,刘梦楠,郜丽鹏,等.运动多站无源时差/频差联合定位方法[J].系统工程与电子技术, 2019.

[3] 许丞梁.低轨双星电子侦察融合定位新体制研究[D].国防科学技术大学[2024-06-21].DOI:CNKI:CDMD:2.1017.834571.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值