【SOC估计】基于扩展卡尔曼滤波器EKF和前馈深度神经网络FNN实现电池充电状态估计(含数据集)附Matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

电池充电状态(SOC)是电动汽车、储能系统等领域的关键参数,准确估计SOC对于电池管理系统(BMS)的安全运行和性能优化至关重要。传统方法如库仑计法受电流积分误差影响较大,而基于模型的方法则需要精确的电池模型。本文提出一种结合扩展卡尔曼滤波器(EKF)和前馈深度神经网络(FNN)的SOC估计方法,利用EKF的实时滤波能力和FNN的非线性逼近能力,实现对电池SOC的准确估计。

1. 引言

随着电动汽车、储能系统等应用的快速发展,对电池性能的准确评估和管理需求日益增长。电池充电状态(SOC)作为衡量电池剩余容量的关键参数,其准确估计对于电池管理系统(BMS)的安全运行和性能优化具有重要意义。

传统的SOC估计方法主要包括库仑计法和基于模型的方法。库仑计法通过积分电池电流来估计SOC,但受限于电流积分误差累积,精度较低。基于模型的方法通过建立电池模型来估计SOC,需要精确的电池模型参数,且计算量大,实时性差。

近年来,深度学习技术在电池SOC估计领域展现出巨大潜力。深度神经网络(DNN)能够学习复杂的非线性关系,并利用大量数据进行训练,实现对电池SOC的准确预测。然而,DNN模型通常需要大量的训练数据,且缺乏实时性。

为了克服现有方法的局限性,本文提出一种结合扩展卡尔曼滤波器(EKF)和前馈深度神经网络(FNN)的SOC估计方法。EKF是一种非线性滤波器,能够利用系统模型和测量数据对状态变量进行实时估计。FNN是一种具有较强非线性逼近能力的深度神经网络,能够学习电池的复杂非线性特性。

本文首先建立了电池的简化模型,并基于该模型推导出EKF算法。然后,利用实验数据训练FNN模型,以提高EKF的估计精度。最后,通过仿真实验验证了该方法的有效性和优势。

2. 扩展卡尔曼滤波器

EKF是一种非线性滤波器,能够利用系统模型和测量数据对状态变量进行实时估计。EKF算法的核心思想是将非线性系统线性化,并将卡尔曼滤波器应用于线性化后的系统。

2.1 电池模型

本文采用以下简化模型来描述电池的动力学特性:

2.2 EKF算法

EKF算法可用于对电池SOC进行实时估计。其主要步骤如下:

  1. 初始化状态向量和协方差矩阵。

  2. 预测步骤:利用电池模型预测下一个时刻的状态向量和协方差矩阵。

  3. 更新步骤:利用测量数据更新状态向量和协方差矩阵。

3. 前馈深度神经网络

FNN是一种具有较强非线性逼近能力的深度神经网络,能够学习电池的复杂非线性特性。本文利用FNN模型对EKF的估计结果进行修正,以提高估计精度。

3.1 网络结构

FNN的网络结构包括输入层、隐藏层和输出层。输入层接收EKF的估计结果,隐藏层对输入信息进行非线性变换,输出层输出修正后的SOC估计值。

3.2 训练数据

FNN的训练数据包括EKF的估计结果和真实的SOC值。这些数据可以通过实验获得。

4. 仿真实验

为了验证本文方法的有效性,本文进行了仿真实验。仿真实验采用MATLAB软件进行,并使用开源数据集作为训练和测试数据。

4.1 数据集

本文使用的数据集包括电池的电压、电流、温度和SOC等信息。数据来源为公开的电池实验数据,包括[数据来源]。

4.2 实验结果

仿真实验结果表明,本文方法能够有效地估计电池SOC,并优于传统的库仑计法和基于模型的方法。

5. 结论

本文提出了一种结合EKF和FNN的电池SOC估计方法,利用EKF的实时滤波能力和FNN的非线性逼近能力,实现了对电池SOC的准确估计。仿真实验结果验证了该方法的有效性和优势。该方法能够有效地提高电池管理系统的精度和可靠性,为电动汽车、储能系统等应用提供技术支持。

⛳️ 运行结果

🔗 参考文献

[1] 商云龙.车用锂离子动力电池状态估计与均衡管理系统优化设计与实现[D].山东大学,2017.

[2] 商云龙,张承慧,崔纳新,等.基于模糊神经网络优化扩展卡尔曼滤波的锂离子电池荷电状态估计[J].控制理论与应用, 2016, 33(2):9.DOI:10.7641/CTA.2016.41167.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值