【无人机路径规划】基于导航变量的多目标粒子群优化算法 NMOPSO)实现复杂山地环境下无人机避障路径规划附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

**摘要:**无人机在山地环境中的应用越来越广泛,然而山地环境的复杂性给无人机的路径规划带来了巨大挑战。本文提出了一种基于导航变量的多目标粒子群优化算法(NMOPSO)来解决复杂山地环境下无人机避障路径规划问题。该算法将路径规划问题转化为多目标优化问题,并利用导航变量来描述无人机的飞行姿态,从而有效地避免了传统方法中路径描述冗长、计算量大等问题。实验结果表明,NMOPSO算法能够在保证飞行安全的前提下,有效地找到安全、高效的无人机路径,并优于传统的粒子群优化算法。

**关键词:**无人机路径规划;导航变量;多目标粒子群优化算法;山地环境;避障

1. 引言

近年来,无人机在各个领域的应用不断涌现,如航空摄影、电力巡检、农业植保等。然而,在山地等复杂环境中,无人机路径规划面临着诸多挑战,包括地形起伏、障碍物密集、路径规划复杂等。传统的路径规划方法,如A*算法、Dijkstra算法等,在处理复杂环境时往往效率低下,难以找到安全、高效的路径。

为了解决上述问题,本文提出了一种基于导航变量的多目标粒子群优化算法(NMOPSO)来实现复杂山地环境下无人机避障路径规划。该算法将路径规划问题转化为多目标优化问题,并利用导航变量来描述无人机的飞行姿态,从而有效地避免了传统方法中路径描述冗长、计算量大等问题。

2. 相关工作

近年来,针对无人机路径规划问题,研究者们提出了一系列算法,主要包括:

  • **传统路径规划算法:**A*算法、Dijkstra算法、RRT算法等,这些算法在处理简单环境时较为有效,但面对复杂环境时则显得力不从心。

  • **基于优化算法的路径规划:**粒子群优化算法(PSO)、遗传算法(GA)、蚁群算法(ACO)等,这些算法能够处理复杂的路径规划问题,但存在收敛速度慢、易陷入局部最优等问题。

  • **基于机器学习的路径规划:**深度学习、强化学习等,这些算法能够学习复杂的环境信息,并根据环境进行路径规划,但需要大量的数据训练,且泛化能力有限。

3. NMOPSO算法

3.1 算法原理

NMOPSO算法是一种基于粒子群优化算法的多目标优化算法。该算法利用导航变量来描述无人机的飞行姿态,从而简化了路径规划问题的描述,并利用多目标优化技术来寻找安全、高效的路径。

3.2 导航变量

导航变量是指用来描述无人机飞行姿态的变量,主要包括:

  • 航向角(Heading angle): 表示无人机飞行方向与水平面北方向之间的夹角。

  • 俯仰角(Pitch angle): 表示无人机机身与水平面之间的夹角。

  • 滚转角(Roll angle): 表示无人机机身绕其纵轴旋转的角。

3.3 目标函数

NMOPSO算法中定义了多个目标函数来衡量路径的优劣,主要包括:

  • 路径长度(Path length): 路径越短,飞行时间越短,效率越高。

  • 安全距离(Safety distance): 路径与障碍物之间的距离越远,安全性越高。

  • 飞行时间(Flight time): 路径越短,飞行时间越短,效率越高。

3.4 算法流程

NMOPSO算法的流程如下:

  1. 初始化粒子群,每个粒子代表一条路径,使用导航变量来描述路径。

  2. 计算每个粒子的目标函数值,并根据目标函数值进行排序。

  3. 根据粒子群中的最优解,更新粒子的速度和位置。

  4. 重复步骤 2-3,直到达到终止条件。

4. 实验结果

为了验证NMOPSO算法的有效性,本文进行了仿真实验。实验环境为一个复杂的山地环境,其中包含多个障碍物。实验结果表明,NMOPSO算法能够有效地找到安全、高效的无人机路径,并优于传统的粒子群优化算法。

5. 结论

本文提出了一种基于导航变量的多目标粒子群优化算法(NMOPSO)来实现复杂山地环境下无人机避障路径规划。该算法通过使用导航变量来描述路径,并利用多目标优化技术,有效地解决了传统方法中路径描述冗长、计算量大等问题。实验结果表明,NMOPSO算法能够在保证飞行安全的前提下,找到安全、高效的无人机路径。未来工作将进一步研究如何提高算法的鲁棒性和泛化能力。

⛳️ 运行结果

🔗 参考文献

T.N. Duong, D.-N. Bui, M.D. Phung. Navigation Variable-based Multi-objective Particle Swarm Optimization for UAV Path Planning with Kinematic Constraints

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值