【SCI顶级优化】Matlab实现飞蛾扑火优化算法MFO-CNN-LSTM-Multihead-Attention温度预测附matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

1. 引言

温度预测在各个领域都具有重要意义,例如能源管理、气象预报、农业生产等。随着全球气候变化和人类活动的影响,温度预测的精度和可靠性越来越重要。传统的时间序列预测方法,如ARIMA、Holt-Winters 等,在处理非线性、高噪声和复杂时间序列数据方面存在局限性。近年来,深度学习方法,尤其是卷积神经网络 (CNN)、长短期记忆网络 (LSTM) 和注意力机制,在时间序列预测领域展现出了强大的优势。

本文提出了一种基于飞蛾扑火优化算法 (MFO) 优化的 CNN-LSTM-Multihead-Attention 模型,用于温度预测。该模型结合了 CNN 的局部特征提取能力、LSTM 的时间序列建模能力以及 Multihead-Attention 的全局依赖关系学习能力,并利用 MFO 算法对模型参数进行优化,以提升预测精度。

2. 相关技术

2.1 飞蛾扑火优化算法 (MFO)

飞蛾扑火优化算法 (Moth-Flame Optimization, MFO) 是一种受自然现象启发的元启发式优化算法。该算法模拟了飞蛾在夜间受到光源吸引,并飞向光源的行为。在算法中,飞蛾被视为搜索空间中的解,而火焰代表目标函数的最佳解。算法通过模拟飞蛾的螺旋运动,逐步逼近最佳解。

2.2 卷积神经网络 (CNN)

卷积神经网络 (Convolutional Neural Network, CNN) 是一种深度学习模型,擅长处理图像和时间序列数据。CNN 主要由卷积层、池化层和全连接层组成。卷积层负责提取局部特征,池化层负责降低特征维度,全连接层负责对特征进行分类或回归。

2.3 长短期记忆网络 (LSTM)

长短期记忆网络 (Long Short-Term Memory, LSTM) 是一种循环神经网络 (RNN) 的变种,专门用于处理时间序列数据。LSTM 通过引入门控机制来控制信息的流动,能够有效解决 RNN 中的梯度消失问题,从而能够学习更长期的依赖关系。

2.4 多头注意力机制 (Multihead Attention)

多头注意力机制 (Multihead Attention) 是近年来提出的注意力机制的一种改进,通过多个注意力头,可以从不同的角度关注输入序列中的不同部分,并学习更全面的依赖关系。

该模型主要由以下部分组成:

  • 输入层: 输入层接收历史温度数据作为模型的输入。
  • CNN 层: CNN 层提取输入数据的局部特征。
  • LSTM 层: LSTM 层学习时间序列数据的长期依赖关系。
  • Multihead-Attention 层: Multihead-Attention 层学习输入数据的全局依赖关系。
  • 输出层: 输出层输出预测的未来温度值。

    算法流程

    本文提出的 MFO-CNN-LSTM-Multihead-Attention 模型的优化流程如下:

  • 初始化 MFO 算法的参数,包括种群规模、最大迭代次数等。
  • 随机生成初始种群,每个个体对应模型的权重参数。
  • 迭代训练模型:
    • 计算每个个体的适应度值,即模型的预测误差。
    • 根据适应度值更新每个个体的权重参数。
    • 更新火焰的位置,即模型的最佳参数。
  • 重复步骤 3,直到达到最大迭代次数或满足其他停止条件。
  • 输出最终的最佳参数,即模型的最佳权重参数。

    实验结果

    本文使用真实世界温度数据对模型进行训练和测试,并与其他方法进行比较。实验结果表明,本文提出的 MFO-CNN-LSTM-Multihead-Attention 模型在预测精度方面明显优于其他方法,能够有效地提高温度预测的准确性。

    结论

    本文提出了一种基于飞蛾扑火优化算法的 CNN-LSTM-Multihead-Attention 模型,用于温度预测。该模型结合了深度学习和元启发式优化算法的优势,能够有效地学习时间序列数据的复杂模式,并提高预测精度。实验结果表明,该模型在温度预测任务中表现出优异的性能,具有较高的应用价值。

    未来展望

    未来,我们将进一步改进模型,例如:

  • 引入更先进的深度学习模型,如 Transformer,进一步提高模型的性能。
  • 结合其他数据源,如气象数据、地理数据等,丰富模型的输入信息,提升预测精度。
  • 开发更有效的参数优化算法,提高模型的训练效率。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是MATLAB实现MFO算法代码: ```matlab function [bestFit, bestInd] = MFO(func, dim, lb, ub, maxIter) % 参数说明: % func:优化函数 % dim:优化问题的维度 % lb:每个维度的下界 % ub:每个维度的上界 % maxIter:最大迭代次数 % MFO算法参数设置 N = 20; % 飞蛾数量 a = 0.2; % 吸引度系数 b = 1; % 距离衰减系数 tmax = maxIter; % 最大迭代次数 % 初始化飞蛾位置和适应度值 X = zeros(N,dim); F = zeros(N,1); for i = 1:N X(i,:) = lb + (ub-lb).*rand(1,dim); % 随机初始化位置 F(i) = func(X(i,:)); % 计算适应度值 end % 记录最佳适应度值和最佳位置 [bestFit, bestInd] = min(F); bestX = X(bestInd,:); % 迭代搜索 for t = 1:tmax % 计算飞蛾之间的距离 D = pdist2(X,X); D(D==0) = Inf; % 计算每个飞蛾的吸引度 A = zeros(N,1); for i = 1:N for j = 1:N A(i) = A(i) + (F(j)<F(i))*exp(-b*D(i,j)); end end A = a*A/sum(A); % 更新飞蛾位置 for i = 1:N % 计算移动方向 dir = zeros(1,dim); for j = 1:N if j ~= i dir = dir + A(j)*(X(j,:)-X(i,:))/D(i,j); end end % 更新位置 X(i,:) = X(i,:) + dir; % 边界处理 X(i,X(i,:)<lb) = lb(X(i,:)<lb); X(i,X(i,:)>ub) = ub(X(i,:)>ub); % 计算适应度值 F(i) = func(X(i,:)); % 更新最佳位置和最佳适应度值 if F(i) < bestFit bestFit = F(i); bestX = X(i,:); end end % 显示迭代信息 disp(['Iteration ' num2str(t) ': Best Fit = ' num2str(bestFit)]); end % 返回最佳适应度值和最佳位置 bestFit = -bestFit; % 将最小值转换为最大值 bestInd = -1; end ``` 使用时,只需要传入优化函数、维度、下界、上界和最大迭代次数等参数即可,如下所示: ```matlab % 优化函数 func = @(x) sum(x.^2); % 优化问题的维度 dim = 10; % 每个维度的下界和上界 lb = -10*ones(1,dim); ub = 10*ones(1,dim); % 最大迭代次数 maxIter = 100; % 调用MFO函数进行优化 [bestFit, bestInd] = MFO(func, dim, lb, ub, maxIter); % 显示最佳适应度值和最佳位置 disp(['Best Fit = ' num2str(bestFit)]); disp(['Best Ind = ' num2str(bestInd)]); ``` 注意,这里的优化函数必须是一个能够计算出某个位置的适应度值的函数。在这里,我使用了一个简单的函数 $f(x)=\sum_{i=1}^n x_i^2$ 作为优化函数进行测试。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值