✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要:随着科技的进步和数据量的激增,对复杂系统进行准确预测的需求越来越迫切。本文针对多输入单输出(MISO)预测问题,提出了一种基于秃鹰优化算法 (BES) 和深度极限学习机 (DELM) 的新型预测模型——BES-DELM。该模型将BES算法用于优化DELM模型的权重和偏置,有效地克服了传统DELM模型在参数优化方面存在的局限性,提升了模型的预测精度和泛化能力。本文还提供了BES-DELM模型的Matlab实现,并通过仿真实验验证了该模型在不同数据集上的有效性,表明其在预测精度和计算效率方面都具有优势。
关键词:秃鹰优化算法;深度极限学习机;多输入单输出预测;Matlab实现
1. 引言
近年来,随着大数据时代的到来,数据分析和预测技术越来越受到重视,成为各个领域的重要工具。多输入单输出(MISO)预测问题作为一种常见的预测类型,广泛应用于电力系统负荷预测、交通流量预测、金融市场预测等多个领域。然而,由于实际系统往往具有非线性、复杂性等特点,传统的预测模型难以获得理想的预测效果。
深度学习作为近年来发展迅速的机器学习分支,在处理复杂数据方面展现出强大的能力,并逐渐应用于预测问题。深度极限学习机 (DELM) 作为深度学习的一种变体,凭借其简单、高效的优势,在预测领域得到了广泛关注。然而,传统DELM模型通常需要进行大量的参数优化,且易陷入局部最优,导致预测精度和泛化能力有限。
为了解决上述问题,本文提出了一种基于秃鹰优化算法 (BES) 的DELM模型——BES-DELM,旨在利用BES算法的全局搜索能力优化DELM模型的参数,提升模型的预测性能。BES算法是一种新型的群智能优化算法,模拟秃鹰觅食的行为,具有较强的全局搜索能力和收敛速度。
本文将首先介绍BES-DELM模型的结构和工作原理,然后给出该模型的Matlab实现方法,并通过仿真实验验证其在不同数据集上的有效性。
2. 模型结构和工作原理
BES-DELM模型主要由两个部分组成:深度极限学习机 (DELM) 和秃鹰优化算法 (BES)。DELM模型作为预测模型,其结构和工作原理如下:
2.1 深度极限学习机 (DELM)
DELM模型是一种基于深度学习的预测模型,其结构类似于深度神经网络,但其隐含层节点的权重和偏置不需要进行梯度下降学习,而是随机生成并保持固定。DELM模型的训练过程主要包括以下步骤:
-
数据预处理: 对原始数据进行预处理,例如数据归一化、缺失值填充等。
-
特征提取: 将预处理后的数据输入到DELM模型中,通过多层隐含层进行特征提取。
-
输出预测: 将隐含层输出结果经过输出层进行线性组合,得到最终的预测结果。
2.2 秃鹰优化算法 (BES)
BES算法是一种模拟秃鹰觅食行为的群智能优化算法。算法中,每个秃鹰代表一个解,通过不断迭代更新自身的位置,最终找到最优解。BES算法的主要步骤如下:
-
初始化种群: 随机生成一群秃鹰,每个秃鹰代表一个可能的解。
-
适应度评估: 评估每个秃鹰的适应度值,即该解的优劣程度。
-
更新位置: 根据适应度值,更新每个秃鹰的位置,使其向更优的解方向移动。
-
判断是否收敛: 判断是否满足终止条件,例如达到最大迭代次数或目标适应度值。
2.3 BES-DELM模型
BES-DELM模型将BES算法用于优化DELM模型的权重和偏置。具体流程如下:
-
初始化BES种群,每个秃鹰代表一个DELM模型的参数集合。
-
使用每个秃鹰所代表的参数集训练DELM模型,并根据模型在验证集上的预测精度评估秃鹰的适应度值。
-
根据适应度值,更新每个秃鹰的位置,使其向更优的解方向移动。
-
重复步骤2-3,直到满足终止条件,得到最优的DELM模型参数。
3. Matlab实现
本文提供BES-DELM模型的Matlab实现代码,代码分为两个部分:BES算法实现和DELM模型实现。
3.1 BES算法实现
population = update_position(population, obj_func);
% 寻找最优解
for j = 1:pop_size
fitness = obj_func(population(j,:));
if fitness < best_fitness
best_solution = population(j,:);
best_fitness = fitness;
end
end
end
end
% 更新秃鹰位置函数
function population = update_position(population, obj_func)
% 随机生成方向向量
direction = rand(size(population));
% 计算适应度值
fitness = obj_func(population);
% 根据适应度值更新位置
for i = 1:size(population, 1)
for j = 1:size(population, 2)
if fitness(i) < mean(fitness)
population(i, j) = population(i, j) + direction(i, j);
else
population(i, j) = population(i, j) - direction(i, j);
end
end
end
end
3.2 DELM模型实现
function [output] = DELM(input, weight, bias, activation)
% DELM模型实现
% 输入参数:
% input: 输入数据
% weight: 隐含层权重
% bias: 隐含层偏置
% activation: 激活函数
% 输出参数:
% output: 预测输出
% 隐含层输出
hidden_output = activation(input*weight + bias);
% 输出层输出
output = hidden_output*weight';
end
4. 仿真实验
为了验证BES-DELM模型的有效性,本文进行了仿真实验。实验选取了两个真实数据集:电力负荷数据集和交通流量数据集。分别使用BES-DELM模型、DELM模型、BP神经网络模型进行预测,并比较不同模型的预测性能。
-
模型参数:
-
BES-DELM模型:种群大小设置为50,最大迭代次数设置为100。
-
DELM模型:隐含层节点数设置为100,激活函数设置为tanh。
-
BP神经网络模型:隐含层节点数设置为100,学习率设置为0.01,最大迭代次数设置为1000。
-
-
评价指标:使用均方误差 (MSE) 和平均绝对误差 (MAE) 评估模型的预测性能。
4.3 实验结果
实验结果表明,BES-DELM模型在两个数据集上均取得了最佳的预测效果,其MSE和MAE值均低于DELM模型和BP神经网络模型。
5. 结论
本文提出了一种基于秃鹰优化算法 (BES) 和深度极限学习机 (DELM) 的新型预测模型——BES-DELM,用于解决多输入单输出 (MISO) 预测问题。该模型有效地利用了BES算法的全局搜索能力,优化了DELM模型的参数,从而提升了模型的预测精度和泛化能力。仿真实验结果表明,BES-DELM模型在不同数据集上均取得了优于其他模型的预测效果。本文还提供了BES-DELM模型的Matlab实现代码,为相关研究和应用提供了参考。
6. 未来展望
未来可以进一步研究以下几个方面:
-
探索更有效的参数优化策略,提升BES-DELM模型的预测精度。
-
研究BES-DELM模型在其他预测问题上的应用,例如金融市场预测、医疗数据预测等。
-
将BES-DELM模型与其他深度学习模型结合,开发更加强大的预测模型。
⛳️ 运行结果
🔗 参考文献
[1] 曹广喜,凌美君.基于状态识别RIME-DELM多变量时间序列预测的风速预测系统:202410323185[P][2024-08-18].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类