✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
一、引言
空间识别是系统辨识领域的重要分支,其主要目标是通过对系统输入输出数据的分析,识别系统的状态空间模型,即确定系统的状态变量、状态矩阵、输入矩阵、输出矩阵等参数。空间识别方法根据其对系统噪声的处理方式可以分为确定性子空间识别 (Deterministic Subspace Identification, DSI) 和随机子空间识别 (Stochastic Subspace Identification, SSI) 两类。DSI 假设系统噪声为确定性信号,而 SSI 则考虑了系统噪声的随机性。
近年来,为了克服 DSI 和 SSI 的局限性,确定性随机子空间识别 (Deterministic-Stochastic Subspace Identification, DSSI) 应运而生。DSSI 结合了 DSI 和 SSI 的优点,能够更准确地识别系统的状态空间模型,尤其适用于同时存在确定性和随机性噪声的复杂系统。
本文将深入探讨 SSI、DSI 和 DSSI 的理论基础、算法实现和性能比较,并通过 Matlab 代码演示其应用。
二、确定性子空间识别 (DSI)
DSI 方法基于以下假设:
-
系统是线性时不变的 (LTI) 系统。
-
系统的输入和输出数据是可测量的。
-
系统的噪声是确定性的,即可以通过某种方式进行建模。
DSI 算法的核心思想是将系统输入输出数据进行 Hankel 矩阵化,然后利用 SVD 分解得到系统的可控子空间和可观测子空间,进而推导出系统的状态空间模型。
2.1 算法步骤
-
数据预处理: 将系统输入输出数据进行 Hankel 矩阵化,得到输入 Hankel 矩阵 𝑈U 和输出 Hankel 矩阵 𝑌Y。
-
子空间识别: 利用 SVD 分解的结果,识别系统的可控子空间和可观测子空间。
-
状态空间模型: 基于子空间识别结果,推导出系统的状态空间模型。
2.2 算法优缺点
优点:
-
算法简单易懂,实现难度低。
-
对噪声比较敏感,在低噪声环境下具有良好的识别精度。
缺点:
-
无法处理随机性噪声。
-
对系统模型结构的先验知识要求较高。
三、随机子空间识别 (SSI)
SSI 方法考虑了系统噪声的随机性,其核心思想是利用系统噪声的统计特性,从输入输出数据中提取系统的信息。
3.1 算法步骤
-
数据预处理: 将系统输入输出数据进行 Hankel 矩阵化,得到输入 Hankel 矩阵 𝑈U 和输出 Hankel 矩阵 𝑌Y。
-
子空间识别: 利用 SVD 分解的结果,识别系统的可控子空间和可观测子空间。
-
状态空间模型: 基于子空间识别结果,推导出系统的状态空间模型。
3.2 算法优缺点
优点:
-
能够有效处理随机性噪声。
-
对系统模型结构的先验知识要求较低。
缺点:
-
算法复杂度较高,计算量较大。
-
对噪声的统计特性有一定的要求。
四、确定性随机子空间识别 (DSSI)
DSSI 方法结合了 DSI 和 SSI 的优点,能够更准确地识别系统状态空间模型。它将系统噪声分解为确定性和随机性两部分,分别利用 DSI 和 SSI 的方法进行处理。
4.1 算法步骤
4.2 算法优缺点
优点:
-
能够有效处理同时存在确定性和随机性噪声的系统。
-
具有较高的识别精度。
缺点:
-
算法复杂度更高,计算量更大。
-
对系统噪声的分解方法有一定的依赖性。
五、Matlab 代码
以下提供 DSSI 算法的 Matlab 代码示例:
% 随机性部分
% 使用 SSI 方法识别状态空间模型
% ...
% 模型合并
% 将确定性和随机性部分的模型进行合并
% ...
% 输出结果
% 显示识别得到的系统状态空间模型
% ...
六、结论
本文对 SSI、DSI 和 DSSI 三种空间识别方法进行了详细的介绍和比较,并提供了 Matlab 代码示例。DSSI 方法能够有效处理同时存在确定性和随机性噪声的系统,具有较高的识别精度。然而,其算法复杂度较高,计算量更大。在实际应用中,需要根据具体情况选择合适的空间识别方法。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类