✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文将深入探讨一个基于代理的模型,用于模拟新冠肺炎在二维网格环境中的传播,重点关注代理移动速度对传播的影响。该模型在 MATLAB 环境中实现,并通过可视化工具展示了疫情传播过程和关键指标的动态变化。
模型描述:
该模型将一个 10x10 的二维网格作为模拟环境,初始设置 500 个代理,随机分布在网格中。每个代理被赋予两种健康状态:易感或感染。模拟运行 115 天,每个时间步长代表一个小时。代理在网格中随机移动,当两个代理处于同一网格位置时,易感代理会被感染的概率由模型参数定义。
感染代理在被隔离之前可以保持移动状态 6 天,之后被隔离在当前位置。隔离结束后,他们将重新进入人群,获得免疫状态,但仍存在 0.0001 的概率会继续传播病毒。
模型可视化界面包含两个部分:左侧是一个 10x10 的网格图,用不同颜色点表示代理的健康状态;右侧是一个线图,展示感染代理比例随时间的变化,并用一个条形图指示当前总代理数量。
本项目使用基于代理的模型来模拟 COVID-19 在二维网格中传播,该网格代表一个封闭环境。模型从初始的 500 个代理开始,这些代理随机分布在网格中。每个代理以恒定的速度随机移动,并在每个时间步长略微改变其方向,模拟个体漫游的行为。当代理占据相同的网格单元时,它们会相互作用,感染传播的概率由单元格中是否存在感染者或隔离者决定。
感染者在六天内继续自由地在网格中移动,在此无症状阶段可能传播病毒。在此期间结束后,代理进入隔离状态,在网格中保持静止,传播病毒的概率为 0.0001。完成隔离期后,代理获得免疫力,不再能感染或传播病毒。
为了简化模型,假设所有代理的年龄和健康状况相同。这简化了模型,并专注于了解病毒在同质人群中的传播。尽管这种假设可能无法反映现实世界的人口统计数据,但它允许更清楚地分析疾病动态,而无需引入与年龄相关行为或易感性相关的额外变量。
该模型在指定的时间步长内运行,代表小时,以模拟疫情随时间的进展。诸如代理速度、感染概率、感染持续时间和隔离期等关键参数可以进行调整,以探索不同的场景及其对病毒传播的影响。在模拟过程中,收集数据以跟踪每个时间步长易感、感染、隔离和免疫代理的数量。这些数据用于可视化流行病的动态,并了解不同的干预措施和参数如何影响疫情的轨迹。
模拟输出图表显示了不同时间点的代理空间分布,以及模拟期间每个状态类别(易感、感染、隔离和免疫)代理数量的趋势。这些可视化提供了对疾病传播方式以及干预措施如何改变其进程的见解。
模型优势:
-
直观可视化: 模型提供了直观的可视化界面,方便用户观察疫情传播过程和关键指标的变化,增强模型的理解和分析能力。
-
参数可调性: 模型允许用户调整关键参数,例如代理初始数量、感染持续时间、感染概率等,以便模拟不同场景和条件下的疫情传播。
-
速度影响分析: 模型重点关注代理移动速度的影响,为研究不同移动行为对疫情传播的影响提供了一个有效的工具。
未来方向:
-
更复杂的代理行为: 未来可以将代理的行为模式设计得更加复杂,例如考虑代理的个人健康状况、社交关系、出行行为等因素,从而更真实地模拟疫情传播过程。
-
更复杂的传播机制: 模型可以进一步扩展,加入更复杂的传播机制,例如考虑不同人群之间的传播差异、潜伏期、症状表现等因素。
-
空间异质性: 模型可以考虑网格环境的空间异质性,例如不同区域的人口密度、社会流动性等因素,从而更精准地模拟疫情传播。
总之,该基于代理的模型为研究新冠肺炎在二维网格环境中的传播提供了有效的模拟工具。通过调整代理移动速度等参数,我们可以观察和分析速度对疫情传播的影响,为疫情防控策略的制定提供参考。未来,我们可以继续完善模型,加入更复杂的代理行为和传播机制,以更准确地模拟现实世界的疫情传播情况。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类