✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
图像加密和信息隐藏是信息安全领域的重要研究方向,两者结合可以实现更高级别的安全防护。本文将探讨一种基于预测误差分类置乱的加密域可逆信息隐藏方法,并提供相应的Matlab代码实现,以期为相关研究提供参考。
传统的可逆信息隐藏方法通常在空间域或变换域中进行,容易受到几何攻击和统计攻击。而将信息隐藏嵌入到加密后的图像中,则可以有效提高安全性。本方法的核心思想是首先对载体图像进行加密,然后利用预测误差的分类特性进行置乱,最后将秘密信息嵌入到置乱后的预测误差中。这种方法具有良好的安全性,并且可以实现数据的可逆恢复。
一、 算法原理
本算法主要包含四个步骤:
1. 图像加密: 采用一种具有强抗攻击能力的加密算法对载体图像进行加密。 常用的加密算法包括混沌映射、高级加密标准(AES)等。本文采用基于Logistic映射的混沌加密算法,其迭代公式如下:
x(n+1) = μ * x(n) * (1 - x(n))
其中,x(0)为初始值,μ为控制参数 (通常取值在3.57到4之间)。通过该映射生成的混沌序列可以作为加密密钥,对图像像素进行置乱或替换。具体操作可以采用Arnold变换或其他类型的置乱算法。
2. 预测误差计算: 对加密后的图像进行预测误差计算。常用的预测方法包括基于像素邻域的预测方法,例如,利用相邻像素的加权平均值来预测当前像素的值。 假设当前像素为I(i,j),其邻域像素为I(i-1,j), I(i,j-1), I(i-1,j-1),则预测值P(i,j)可以表示为:
P(i,j) = a * I(i-1,j) + b * I(i,j-1) + c * I(i-1,j-1)
其中,a, b, c为加权系数,其值需根据图像特性进行调整。预测误差e(i,j)则为:
e(,j) = I(i,j) - P(i,j)
3. 预测误差分类置乱: 将预测误差e(i,j)根据其大小进行分类,例如,分为正值、负值和零值三类。 然后对不同类别的预测误差进行不同的置乱操作。这种分类置乱可以增加算法的复杂度,提高安全性。 置乱的方法可以采用多种,例如,基于混沌序列的置乱,或者基于矩阵变换的置乱。
4. 秘密信息嵌入及可逆恢复: 将秘密信息嵌入到置乱后的预测误差中。 嵌入方法可以采用LSB替换或者其他更先进的嵌入技术。 为了保证信息的完全可逆恢复,需要在嵌入过程中记录辅助信息,例如,置乱前的误差分布信息等。 在信息提取阶段,首先根据辅助信息进行逆置乱,然后恢复预测误差,最后利用预测误差和预测值恢复原始图像。
二、 Matlab代码实现
以下代码片段展示了部分关键步骤的Matlab实现,为了简化,省略了一些细节,例如完整的加密算法和更复杂的置乱算法。for j = 2:cols
P = 0.25*(img(i-1,j) + img(i,j-1) + img(i-1,j-1) + img(i-1,j+1));
e(i,j) = img(i,j) - P;
end
end
% 预测误差分类和置乱
% ... (省略分类和置乱代码) ...
% 信息嵌入
% ... (省略信息嵌入代码) ...
% 信息提取和图像恢复
% ... (省略信息提取和图像恢复代码) ...
完整的代码需要包含Logistic映射的实现、Arnold变换的实现、更精细的预测误差分类和置乱算法以及秘密信息的嵌入和提取算法。 这部分代码较为复杂,需要根据具体的算法选择合适的函数和参数进行编写。
三、 结论
本文提出了一种基于预测误差分类置乱的加密域可逆信息隐藏方法,并给出了部分Matlab代码实现。该方法通过将信息隐藏嵌入到加密后的图像中,有效提高了安全性。 未来的研究可以集中在以下几个方面:提高加密算法的安全性;探索更有效的预测误差分类和置乱方法;研究更鲁棒的秘密信息嵌入和提取技术;以及对算法的安全性进行更全面的评估。 通过进一步的研究和改进,可以开发出更高效、更安全的可逆信息隐藏算法,满足日益增长的信息安全需求。
⛳️ 运行结果
🔗 参考文献
[1]屈凌峰,和红杰,陈帆.基于预测误差分类置乱的图像加密域可逆信息隐藏[J].光电子.激光, 2019, 30(2):7.DOI:CNKI:SUN:GDZJ.0.2019-02-010.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类