【图像加密】基于预测误差分类置乱的加密域可逆信息隐藏附Matlab代码

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

图像加密和信息隐藏是信息安全领域的重要研究方向,两者结合可以实现更高级别的安全防护。本文将探讨一种基于预测误差分类置乱的加密域可逆信息隐藏方法,并提供相应的Matlab代码实现,以期为相关研究提供参考。

传统的可逆信息隐藏方法通常在空间域或变换域中进行,容易受到几何攻击和统计攻击。而将信息隐藏嵌入到加密后的图像中,则可以有效提高安全性。本方法的核心思想是首先对载体图像进行加密,然后利用预测误差的分类特性进行置乱,最后将秘密信息嵌入到置乱后的预测误差中。这种方法具有良好的安全性,并且可以实现数据的可逆恢复。

一、 算法原理

本算法主要包含四个步骤:

1. 图像加密: 采用一种具有强抗攻击能力的加密算法对载体图像进行加密。 常用的加密算法包括混沌映射、高级加密标准(AES)等。本文采用基于Logistic映射的混沌加密算法,其迭代公式如下:

x(n+1) = μ * x(n) * (1 - x(n))

其中,x(0)为初始值,μ为控制参数 (通常取值在3.57到4之间)。通过该映射生成的混沌序列可以作为加密密钥,对图像像素进行置乱或替换。具体操作可以采用Arnold变换或其他类型的置乱算法。

2. 预测误差计算: 对加密后的图像进行预测误差计算。常用的预测方法包括基于像素邻域的预测方法,例如,利用相邻像素的加权平均值来预测当前像素的值。 假设当前像素为I(i,j),其邻域像素为I(i-1,j), I(i,j-1), I(i-1,j-1),则预测值P(i,j)可以表示为:

P(i,j) = a * I(i-1,j) + b * I(i,j-1) + c * I(i-1,j-1)

其中,a, b, c为加权系数,其值需根据图像特性进行调整。预测误差e(i,j)则为:

e(,j) = I(i,j) - P(i,j)

3. 预测误差分类置乱: 将预测误差e(i,j)根据其大小进行分类,例如,分为正值、负值和零值三类。 然后对不同类别的预测误差进行不同的置乱操作。这种分类置乱可以增加算法的复杂度,提高安全性。 置乱的方法可以采用多种,例如,基于混沌序列的置乱,或者基于矩阵变换的置乱。

4. 秘密信息嵌入及可逆恢复: 将秘密信息嵌入到置乱后的预测误差中。 嵌入方法可以采用LSB替换或者其他更先进的嵌入技术。 为了保证信息的完全可逆恢复,需要在嵌入过程中记录辅助信息,例如,置乱前的误差分布信息等。 在信息提取阶段,首先根据辅助信息进行逆置乱,然后恢复预测误差,最后利用预测误差和预测值恢复原始图像。

二、 Matlab代码实现

以下代码片段展示了部分关键步骤的Matlab实现,为了简化,省略了一些细节,例如完整的加密算法和更复杂的置乱算法。
for j = 2:cols
P = 0.25*(img(i-1,j) + img(i,j-1) + img(i-1,j-1) + img(i-1,j+1));
e(i,j) = img(i,j) - P;
end
end

% 预测误差分类和置乱
% ... (省略分类和置乱代码) ...

% 信息嵌入
% ... (省略信息嵌入代码) ...

% 信息提取和图像恢复
% ... (省略信息提取和图像恢复代码) ...

 

完整的代码需要包含Logistic映射的实现、Arnold变换的实现、更精细的预测误差分类和置乱算法以及秘密信息的嵌入和提取算法。 这部分代码较为复杂,需要根据具体的算法选择合适的函数和参数进行编写。

三、 结论

本文提出了一种基于预测误差分类置乱的加密域可逆信息隐藏方法,并给出了部分Matlab代码实现。该方法通过将信息隐藏嵌入到加密后的图像中,有效提高了安全性。 未来的研究可以集中在以下几个方面:提高加密算法的安全性;探索更有效的预测误差分类和置乱方法;研究更鲁棒的秘密信息嵌入和提取技术;以及对算法的安全性进行更全面的评估。 通过进一步的研究和改进,可以开发出更高效、更安全的可逆信息隐藏算法,满足日益增长的信息安全需求。

⛳️ 运行结果

🔗 参考文献

[1]屈凌峰,和红杰,陈帆.基于预测误差分类置乱的图像加密域可逆信息隐藏[J].光电子.激光, 2019, 30(2):7.DOI:CNKI:SUN:GDZJ.0.2019-02-010.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值