【复现】考虑泊位优化和多能协同的港口综合能源系统运行优化(Matlab代码实现)

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab代码及仿真咨询内容点击👇

🔥 内容介绍

摘要: 随着全球贸易的快速发展和能源需求的不断增长,港口作为重要的交通枢纽,其能源消耗和环境影响日益突出。传统的港口能源系统运行模式面临着能效低下、排放污染严重等问题。近年来,综合能源系统(Integrated Energy System, IES)作为一种能够优化多种能源生产、转换、存储和消费的新型能源供应模式,在港口的应用日益受到重视。本文旨在复现并深入探讨“考虑泊位优化和多能协同的港口综合能源系统运行优化”这一研究课题,通过回顾相关文献、梳理研究思路、剖析建模方法和优化算法,力求理解并重现该研究的核心内容,并进一步探讨该领域未来的发展方向。

引言: 港口是连接陆地和海洋的重要节点,承载着巨大的货物吞吐量。然而,传统的港口运营模式往往依赖于单一能源供应,例如电网供电或柴油发电机,这不仅造成了能源浪费,也带来了严重的环境污染。港口设备,如岸电设施、起重机、冷藏集装箱等,都需要大量的电力供应,而传统的能源供应方式难以满足港口日益增长的能源需求,并容易造成能源供应的不稳定。因此,构建高效、清洁、可持续的港口能源系统势在必行。

港口综合能源系统(Port Integrated Energy System, PIES)通过整合多种能源资源,如电力、天然气、可再生能源(太阳能、风能)等,并利用先进的能源转换和存储技术,能够实现能源的优化配置和高效利用。与此同时,港口泊位的优化调度直接影响着船舶的停靠时间和岸电的使用需求,进而影响着整个PIES的能源负荷曲线。因此,将泊位优化与PIES运行优化相结合,能够更全面地提升港口的能源效率和经济效益,降低环境影响。

文献综述: 关于港口综合能源系统的研究已经取得了一定的成果。学者们主要从以下几个方面展开研究:

  • PIES架构设计与建模: 研究者们致力于构建不同类型的PIES架构,包括基于可再生能源的独立系统、与电网互联的并网系统等。在建模方面,通常采用数学规划方法,如混合整数线性规划(MILP)、混合整数非线性规划(MINLP)等,对PIES的各种设备进行精确建模,包括发电单元(燃气轮机、柴油发电机、太阳能光伏、风力发电机)、储能单元(电池、储氢)、转换单元(电制气、热泵)等。模型的目的是优化PIES的运行策略,以满足港口的能源需求,同时降低运行成本和环境排放。

  • PIES运行优化: 运行优化主要针对PIES的经济调度和能源管理,旨在找到最佳的能源供应方案。优化目标通常包括最小化运行成本、最大化可再生能源利用率、降低碳排放等。优化方法包括传统优化算法(如线性规划、非线性规划、动态规划)和智能优化算法(如遗传算法、粒子群算法、模拟退火算法)。

  • 泊位优化与PIES协同: 一些研究开始关注泊位优化对PIES的影响,并尝试将二者结合起来进行联合优化。泊位优化主要考虑船舶的靠港时间、装卸效率、岸电需求等因素,旨在提高港口的吞吐能力和服务质量。将泊位优化与PIES协同,可以更好地协调船舶的能源需求和PIES的能源供应,从而实现整体的能源效率提升。

  • 需求响应与能量管理: 需求响应(Demand Response, DR)通过激励用户改变用电行为,能够有效地平滑负荷曲线,降低峰值负荷,提高能源利用效率。在PIES中,可以引入DR机制,引导船舶和港口设备调整用电时间,从而降低PIES的运行压力。能量管理系统(Energy Management System, EMS)则负责监控和控制PIES的运行状态,实时调整能源供应策略,以保证系统的稳定性和可靠性。

复现研究思路: 为了复现“考虑泊位优化和多能协同的港口综合能源系统运行优化”这一课题,可以按照以下步骤进行:

  1. 确定研究对象: 首先需要明确研究的港口类型和规模,选择一个具有代表性的港口作为研究对象。了解该港口的能源需求特点、现有能源供应结构、可再生能源资源情况以及泊位调度规则等信息。

  2. 构建PIES模型: 根据研究对象的实际情况,构建相应的PIES模型。该模型应包括各种能源设备的数学模型,以及能源转换和存储环节的约束。需要考虑的设备包括:

    • 发电单元: 燃气轮机、柴油发电机、太阳能光伏、风力发电机等。

    • 储能单元: 电池、储氢等。

    • 转换单元: 电制气、热泵等。

    • 负荷: 船舶岸电、港口设备用电、照明等。

  3. 构建泊位优化模型: 建立泊位优化模型,该模型应考虑船舶的到港时间、装卸时间、岸电需求等因素,以优化船舶的停靠位置和时间。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值