【配电网优化】基于串行和并行ADMM算法的配电网优化研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着能源结构的调整和可持续发展理念的深入,分布式电源(Distributed Generation, DG)在配电网中的渗透率不断提高。分布式电源的接入为配电网带来了诸多优势,如提高能源利用效率、减少传输损耗、增强供电可靠性等。然而,高渗透率的分布式电源也给传统配电网的运行和控制带来了一系列挑战。

传统配电网是基于单向潮流的设计理念构建的,主要由集中式电源供电,其控制和调度方式相对简单。当分布式电源大量接入后,配电网的潮流分布变得复杂,可能出现双向潮流,这对传统的电压调节、功率平衡控制以及继电保护等技术提出了严峻考验 。例如,分布式电源的输出功率受自然条件(如光照、风速等)影响较大,具有较强的随机性和波动性,这使得配电网的电压稳定性难以保障,容易出现电压越限等问题 。同时,大量分布式电源的接入还可能导致电网的谐波污染加剧,影响电能质量。

为了应对这些挑战,主动配电网(Active Distribution Network, ADN)的概念应运而生。主动配电网通过采用先进的监测、控制和通信技术,实现对分布式电源、储能装置、负荷等多种元素的协调优化控制,以提升配电网的运行效率、可靠性和电能质量 。在主动配电网的运行优化过程中,分布式控制方法因其具有良好的灵活性、可扩展性和鲁棒性,逐渐成为研究的热点。

交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)作为一种有效的分布式优化算法,近年来在电力系统领域得到了广泛应用。ADMM 算法能够将复杂的大规模优化问题分解为多个小规模的子问题,这些子问题可以在分布式节点上并行求解,从而大大降低了计算复杂度,提高了计算效率 。同时,ADMM 算法通过引入乘子变量,能够有效地处理优化问题中的约束条件,使得求解结果更加准确和可靠。

在配电网优化中,基于 ADMM 算法可以实现对分布式电源的出力优化、储能装置的充放电控制以及网络重构等任务的协同优化。通过合理地设计 ADMM 算法的迭代步骤和信息交互机制,可以充分利用分布式节点的本地信息,实现全局最优的配电网运行状态。此外,ADMM 算法还具有良好的收敛性和鲁棒性,能够在不同的网络拓扑和运行条件下稳定运行。

本文将深入研究基于串行和并行 ADMM 算法的配电网优化方法,详细阐述算法的原理、实现步骤以及在配电网优化中的应用案例。通过理论分析和仿真实验,验证 ADMM 算法在提高配电网运行效率、降低功率损耗、改善电压质量等方面的有效性和优越性,为主动配电网的实际工程应用提供理论支持和技术参考。

二、配电网优化研究现状

随着新能源在配电网中的广泛接入,配电网的优化研究成为了电力领域的热点话题,吸引了国内外众多学者的关注。

在国外,美国和欧洲等发达国家在新能源并网技术研发方面处于领先地位。美国的一些科研机构和高校致力于研究新能源发电设备与配电网的高效接口技术,以提升新能源的并网稳定性和电能质量 。例如,通过研发新型的电力电子变换器,实现对分布式电源输出功率的精确控制,减少其对电网的冲击。同时,欧洲在配电网的智能化改造方面投入了大量资源,通过建设智能电网,实现对配电网的实时监测、分析和控制,提高了配电网对新能源的接纳能力 。他们还开展了大量关于新能源接入对配电网运行影响的研究,通过建立详细的数学模型和仿真平台,深入分析新能源发电的波动性和间歇性对电网稳定性、潮流分布、电压质量等方面的影响。

在国内,新能源接入配电网优化运行的研究也取得了丰硕的成果。在配电网的运行策略优化方面,学者们提出了多种基于优化算法的运行策略,旨在提高配电网的运行效率和可靠性 。例如,运用线性规划、非线性规划等数学优化方法,对分布式电源的出力、储能装置的充放电以及负荷的分配进行优化,以实现配电网的经济运行和新能源的最大消纳 。在新能源并网控制技术方面,研究重点主要集中在如何提高新能源发电的可控性和稳定性。通过采用先进的控制策略,如最大功率点跟踪控制、功率因数校正控制等,实现对新能源发电设备的高效控制,使其能够更好地适应电网的运行要求 。此外,配电网建模与仿真也是国内研究的重要方向之一。科研人员通过建立精确的配电网数学模型,结合实际运行数据,利用仿真软件对新能源接入后的配电网进行模拟分析,为配电网的规划、设计和运行提供了有力的技术支持 。例如,中国电力科学研究院有限公司于 2024 年 7 月申请的专利 “配电网的数据模型建模系统、仿真分析平台及方法”,通过创新的模块化设计,解决了配电网建模过程中灵活度低、技术门槛高与缺乏标准化支持的问题,为配电网的建模与仿真提供了新的思路和方法 。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值