✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. BP 神经网络在状态估计中的应用
- 原理
:BP 神经网络是一种基于误差反向传播算法的多层前馈神经网络。它由输入层、隐藏层和输出层组成,通过不断调整神经元之间的连接权重,使网络的输出尽可能接近实际值。在状态估计中,将系统的可观测变量作为输入,状态变量作为输出,通过训练神经网络来建立输入与输出之间的映射关系。
- 训练过程
:首先,随机初始化神经网络的权重。然后,将训练数据输入到网络中,通过正向传播计算出网络的输出,并与实际的状态值进行比较,得到误差。接着,利用误差反向传播算法,将误差从输出层反向传播到输入层,根据误差调整权重,使得误差逐渐减小。重复这个过程,直到网络的误差达到预设的阈值或者达到最大训练次数。
- 优点
:具有很强的非线性映射能力,能够处理复杂的系统状态估计问题;对数据的适应性强,能够自动学习数据中的规律;具有较好的泛化能力,对于未见过的数据也能进行有效的状态估计。
- 缺点
:训练过程收敛速度慢,容易陷入局部最优解;对训练数据的依赖性强,如果训练数据不充分或存在噪声,可能会影响估计的准确性;网络结构的选择缺乏理论指导,需要通过大量的实验来确定合适的结构。
2. 扩展卡尔曼滤波 EKF + BP 在状态估计中的应用
- EKF 原理
:扩展卡尔曼滤波是卡尔曼滤波在非线性系统中的推广。它通过对非线性系统进行线性化近似,将其转化为近似的线性系统,然后利用卡尔曼滤波的方法进行状态估计。EKF 基于系统的状态方程和观测方程,通过预测和更新两个步骤来不断估计系统的状态。
- EKF + BP 结合方式
:一种常见的结合方式是利用 BP 神经网络来对系统的非线性函数进行建模,然后将 BP 神经网络的输出作为 EKF 中的非线性部分。在预测步骤中,使用 EKF 的线性化模型进行状态预测;在更新步骤中,利用 BP 神经网络对观测值进行处理,得到更准确的观测信息,然后结合预测值进行状态更新。
- 优点
:结合了 EKF 对线性系统估计的有效性和 BP 神经网络对非线性函数的逼近能力,能够更好地处理非线性系统的状态估计问题;相比单纯的 BP 神经网络,EKF 的引入可以利用系统的先验信息和观测数据的统计特性,提高估计的准确性和稳定性。
- 缺点
:EKF 的线性化近似可能会引入误差,特别是在系统非线性较强的情况下;BP 神经网络的训练仍然存在收敛速度慢和容易陷入局部最优解的问题;两者结合需要更多的计算资源和时间,增加了算法的复杂性。
3. 粒子滤波 PF 轨迹估计在状态估计中的应用
- 原理
:粒子滤波是一种基于蒙特卡洛模拟的非线性滤波方法。它通过一组随机采样的粒子来表示系统的状态分布,每个粒子都有一个对应的权重。在时间更新过程中,根据系统的状态转移方程对粒子进行采样,得到新的粒子集合;在观测更新过程中,根据观测值对粒子的权重进行调整,使得权重较大的粒子更接近真实状态。通过不断地更新粒子和权重,最终根据粒子的加权平均来估计系统的状态。
- 粒子表示与权重计算
:粒子通常用状态变量的样本值来表示,例如在轨迹估计中,粒子可以是不同时刻的位置和速度等状态信息的样本。权重的计算基于观测模型,通过比较粒子的预测观测值与实际观测值的差异来确定权重,差异越小,权重越大。
- 优点
:能够处理高度非线性和非高斯的系统状态估计问题,对模型的适应性强;不需要对系统进行线性化近似,避免了线性化带来的误差;通过大量的粒子采样,可以较好地描述状态的概率分布,提供更全面的状态信息。
- 缺点
:计算量较大,随着粒子数量的增加,计算成本呈指数增长;当系统状态空间较大时,容易出现粒子退化现象,即大部分粒子的权重变得很小,只有少数粒子对估计结果有贡献,导致估计精度下降;粒子滤波的性能依赖于粒子的采样策略和重要性函数的选择,如果选择不当,会影响估计的准确性。
4. 三种方法的比较与总结
- 性能比较
:BP 神经网络在处理复杂非线性问题时具有优势,但准确性和稳定性相对较差;EKF + BP 结合了两者的优点,在一定程度上提高了估计性能,但对于强非线性系统仍可能存在误差;粒子滤波能够较好地处理非线性和非高斯问题,在状态估计的准确性和鲁棒性方面表现较好,但计算成本较高。
- 适用场景
:BP 神经网络适用于对实时性要求不高、系统非线性复杂且数据丰富的场景;EKF + BP 适用于非线性程度适中、对估计精度和实时性有一定要求的系统;粒子滤波适用于对估计精度要求高、系统非线性强且非高斯特性明显的场景,如机器人轨迹跟踪、目标跟踪等领域。
- 发展趋势
:随着人工智能和机器学习技术的不断发展,BP 神经网络可能会结合更先进的优化算法和网络结构来提高性能;EKF + BP 可以进一步探索更有效的结合方式和改进 EKF 的线性化方法;粒子滤波则会在降低计算成本、改进采样策略和解决粒子退化问题等方面不断研究和创新,同时也会与其他算法相结合,以适应不同的应用需求
⛳️ 运行结果
🔗 参考文献
[1] 张子超,邹必昌.基于混合卡尔曼粒子滤波的电动汽车锂电池荷电状态估计[J].汽车工程师, 2024(003):000.
[2] 高翠.基于改进粒子滤波的电力系统状态估计研究[D].西南大学,2021.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇