更加详细的内容请参考闵老师的博客:
https://blog.csdn.net/minfanphd/category_11436381.html
一.论文题目
题目对于论文来说至关重要,好的题目可以吸引读者的注意,同时阐述清楚本文的工作。具体来说题目需要做到:
1.题目能够吸引读者兴趣
2.简单明了的阐述清楚本文的工作
3.容易被检索到
4.长度控制在40-60个字母之间
以2023年www的一篇论文题目为例:
Robust Preference-Guided Denoising for Graph based Social Recommendation
清楚的阐明了本文工作是基于图偏好引导去噪的社交推荐,60个字母左右,通过社交推荐和图去噪均可以被检索到。
二.摘要
Abstract 就是把重要的内容抽取出来。它通常包括三个部分: 已有工作的评述 (提出问题/挖坑), 本文工作的描述 (从技术的角度填坑), 实验结果 (从应用的角度填坑)。
闵老师讲述的摘要10句法:
1.阐述问题的重要性
2.说明已有工作
3.说明已有工作的不足(提出问题)
4.本文工作 (从技术的角度填坑)
5.本文方法的第 1 个技术/步骤/方面/优势/贡献
6.本文方法的第 2 个技术/步骤/方面/优势/贡献
7.本文方法的第 3 个技术/步骤/方面/优势/贡献
8.实验设置
9.实验结果(从应用的角度填坑)
10.吹嘘本文
用这种方法进行实践:
1.阐述问题的重要性
With the rise of social networks, social recommender systems play a crucial role in delivering personalised recommendation services.
2.已有工作
Graph-based social recommender systems can effectively leverage complex social connections to enhance recommendation accuracy.
3.说明已有工作的不足(提出问题)
However, many social connections may contain redundant or noisy information, impacting recommendation effectiveness and efficiency.
4.本文工作 (从技术的角度填坑)
In this paper, we propose a social recommendation algorithm (SRARIS) that suppresses redundant information through a custom-designed loss function and incorporates Adaptive adjustment of social relationship weights to further improve recommendation quality.
5.本文方法的第 1 个技术
For suppresses redundant information, We design a loss function based on information overload theory.
6.本文方法的第 2 个技术
For Adaptive adjustment mechanisms, We adjust its side weights according to the degree of the users.
7.实验设置
We conducted experiments on three benchmark datasets, comparing SRARIS with nine state-of-the-art models.
8.实验结果(从应用的角度填坑)
The results demonstrate that SRARIS consistently outperforms all baselines across all datasets.
三.关键词
关键词是用于检索论文的一种重要的方式,具体来说关键词需要做到:
1.关键词常被看作摘要的一种补充
2.一般需要 3–5 个关键词
3.关键词一般由 1–3 个单词构成
4.将关键词按照字母表排序
还是以刚才的2023年www的一篇论文关键词为例:
Social Recommendation, Graph Denoising, Preference Learning
四.引言
引言的作用:
引言应该对整个故事进行详细的描述. 如果说摘要是电影 5 分钟宣传片的话, 引言就应该是大致的剧本. 很多审稿人在读完引言后, 就有了基本的判断. 如果引言写得漂亮, 他就会在后面的正文中找出一些证据, 赞扬研究工作有意义, 理论完备, 实验效果好等等
计算机领域 (特别是顶会) 流行在引言里面放 “开局一张图”.
如果采用这种风格, In this paper 之后就应该围绕该图进行解释. “一幅图胜过千言万语”, 该图可以帮助读者花最少的时间理解论文的主要内容.
举例说明:
还是以刚才的2023年www的那篇论文,就是这种模式,通过该图帮助读者花最少的时间理解论文的主要内容,像这篇文章最核心的地方就是采用了用户偏好进行去噪。
As we have shown in Figure 1(a),most users only share similar preferences with a small portion
of friends. Specifically, the median ratio value of friends having co-interactions is about 30% and 20% in two empirical datasets, respectively. Therefore, the rest social relations may be redundant or even harmful for social recommendation, as it is quite possible that two friends have distinct preferences in some areas. Consequently, previous GSocRec models that directly characterize social influence over the full social network have two shortcomings.(通过图a描述某些社会关系对于社会推荐来说可能是多余的,甚至是有害的)
In this paper, we propose a novel denoising-enhanced recommendation framework for GSocRec models as illustrated in Figure 1(b).The core of this framework is a Graph Denoising Method for Social Recommendation (shorten as GDMSR), which leverages user preferences to identify informative social relations from massive candidates and retain them as the denoised social graph, empowering the downstream GSocRec model with an arbitrary structure. To solve
the first challenge of characterizing relation confidence, GDMSR is designed to better exploit preference guidance in a two-fold manner, i.e., explicit preference-based relation modeling and implicit co-supervision by a recommendation loss. As for the second challenge of robust denoising, it is equipped with a self-correcting curriculum learning module and an adaptive denoising strategy that both favor highly-confident samples.(通过图b描述本文的核心工作,通过用户的偏好去除无用的社交关系)
五.理论部分
理论部分全靠数学功底。
一般性的准则如下:
- 理论应该完备
- 符号要保持同一风格
- 重要结论称为定理 theorem, 定理前面打辅助的叫作引理 lemma, 定理后面的尾巴叫推论 corollary, 附属于算法的叫 property.
六.实验部分
实验部分是重头戏。
数据集:数据集越多, 覆盖领域越广, 结果就越可信。但对于一些领域和问题而言, 数据集却非常珍贵. 因此可以使用人造数据集,或者数据集随机采样成多个。
自问自答模式:实验的主要目的是回答一些作者和读者关心的问题. 因此, 可以采用自问自答的方式, 在实验之前提出这些问题, 在实验结果列出之后逐个回答它们.
对比实验和消融实验:对比实验需要比较经典方案, 基准方案, 最先进的方案.消融实验主要是用来说明自己模块的有效性,需要控制单一变量
不需要在所有数据集和所有指标都击败基础的模型,“no free lunch”,在分析自己方案优势之余, 也应该分析它的劣势,一个方案既然有优点, 就肯定有缺点. 既然有擅长的数据/指标, 也就有不擅长的数据/指标.。
讲道理, 论文写作本身只涉及包装, 即将已经做好实验的创新性成果写成一篇论文. 实验效果不好, 是方案设计的问题.
对于机器学习而言, 实验效果主要受几方面的影响:
1.方案是否合理. 虽然结果无法控制, 但方案本身有设计理念, 有物理意义。
2.方案是否与数据集匹配. 有些方案只适用于稠密数据, 即不能有太多的缺失值; 有的方案只适用于类平衡数据, 即正负样本数量差距不大. 如果不匹配, 很可能导致效果差.
3.运气. 机器学习的结果不是确定的. 即使你的代码正确地贯彻了你的意图, 你也不能幻想自己的方案一实现就获得很好效果
七.结论和进一步工作
作为人们的阅读习惯, 最后一部分总是要看的. 通常审稿人和读者都会逐句阅读本部分.结论一般不要太长,5 句就够了。如果想讨论的内容比较多, 可以在本节之前加入一个单独的 Discussions 小节.对于进一步工作,读者很可能非常关注这一部分, 因为他们可以按照这种思路继续进行研究. 作为一项研究工作, 打开一扇门比完全解决某一问题更重要. 如果这一部分写得好, 就会有很多的引用. 引用数量也比论文发表数量更重要.
八.参考文献
Latex 提供了 bib 文件进行参考文献的管理.
每篇参考文献只需要写 7-8 行, 如:
@ARTICLE{MinZhang2020Frequent,
author = {Fan Min and Zhi-Heng Zhang and Wen-Jie Zhai and Rong-Ping Shen},
title = {Frequent pattern discovery with tri-partition alphabets},
journal = {Information Sciences},
year = {2020},
volume = {507},
number = {1},
pages = {715--732},
doi = {10.1016/j.ins.2018.04.013}
}
@INPROCEEDINGS{MinCai2007Dynamic,
author = {Fan Min and Hong-Bin Cai and Qi-He Liu and Zhong-Jian Bai},
title = {Dynamic discretization: a combination approach},
booktitle = {Proc. ICMLC},
year = {2007},
pages = {3672--3677}
}
根据期刊提供的.cls文件,可以调整论文的总体格式。这包括选择期刊模式(journal或conference)以及其他特定的格式要求。
九.注意事项
一般而言, 未出现在任何学术论文中的单词, 不可以使用.
Have’t 与 Don’t
在正式的论文中, 这种简写是不正确的. 应使用 have not, do not, cannot 之类. 仅当 authors’ 之类的情况, 才使用撇号.
And
禁止在句子的开头用 And. 它在这个位置没有任何实际的意义, 因为相邻的句子本身就有相关性. 除了童话, 没人在句首使用 and.句子中间慎用 and, 除非你有对仗工整的词组, 如: data mining and machine learning. 而 data mining and algorithm design 就是一种滥用, 因为两者从语义上来说无法并列. 初学者滥用本词的非常多, 所以需要全篇自查, 并绕过它.
Easy
禁用. 如果一个东西是简单的, 大家还研究它们干什么?
Simple
慎用. 它与 easy 有些相似. 如果是想说 simple yet effective, 也可以偶尔使用.
Solve
慎用. 只有我们彻底解决某个数学难题, 写出了相应的定理与证明, 才能说 solve. 做机器学习, 一般无法解决某个问题, 所以应该写 handle 或 address.
Novel
常用的单词是 new. 只要你写一篇论文, 要么涉及 new 问题, 要么涉及 new 方法, 所以这个说法很正常. 但 novel 一词就比较夸张, 表示比较大的创新. 审稿人看到这个词会提升对这篇论文的预期, 如果发现招数没有太特别, 就会拒掉. 所以使用这个词的时候要慎重. 当然, 也有人指出, 如果你投的是顶刊顶会, 都不敢用 novel 的话, 审稿人也会小瞧你. 还是根据自己工作的创新性来选择吧.
Only
把 only 放到一个尽可能靠后的位置. 如: 使用 consider only uniform distribution 而不是 only consider uniform distribution. 前者表示你仅考虑了均匀分布, 对其它分布有能力研究, 只是暂时没做而已. 而后者表示你怂.
Prove
实验结果只能表明 (show) 而不能证明 (prove) 某个规律, 如你的结果比别人的好. 仅当你写了定理、性质及其证明过程, 才能说 prove.