学习笔记
m057737058chlmyr
这个作者很懒,什么都没留下…
展开
-
信息论——信息熵
机器人学中信息熵的简要概念解析原创 2023-04-06 16:22:41 · 178 阅读 · 0 评论 -
海洋机器人的覆盖路径规划算法
海洋机器人覆盖路径规划(CPP)原创 2022-06-14 16:45:41 · 410 阅读 · 0 评论 -
一种基于前沿的自主探索方法
参考文献:[1]YAMAUCHI B. A frontier-based approach for autonomous exploration[C/OL]//Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97. “Towards New Computational Principles for Robotics and Automa...原创 2022-05-04 17:06:24 · 831 阅读 · 0 评论 -
Next-Best-View(下一个最佳视角)
Agent进入地图,反复探测,尽可能多地获得环境信息,然后在已知的这些环境中选择下一个最佳视点,并规划出到该视点的无障碍路径(这次探测能够增加覆盖的范围)。重复上述过程,直到认为剩余遮挡物太小或传感器已无法探测原创 2022-05-10 16:27:25 · 1372 阅读 · 0 评论 -
部分可观测马尔可夫过程POMDP
找不到太多学习资料,根据现有资料的学习内容比较凌乱,有待进一步优化原创 2022-03-11 14:54:30 · 4219 阅读 · 6 评论 -
蒙特卡罗树搜索的笔记
一、树搜索树搜索算法:1.盲目搜索→深度优先、广度优先;2.贪心算法→A*;3.博弈树算法→极小化极大算法(minmax)假设对手每一步都是最优的策略,即对手永远能让我方收益最小化,这样得到的策略是最大化我方收益的策略二、蒙特卡洛树搜索四个步骤1.选择:从根节点开始,递归应用选择策略(不一定是最优的策略,常用:UCB)得到最需要被拓展的节点(这个节点不能是叶子节点也不能是走过了的节点)2.拓展:上一步选定的节点生成一个或者多个子节点3.模拟:即蒙特卡罗过程,从拓展的子节点开始采样模拟可能原创 2022-03-08 20:54:19 · 803 阅读 · 0 评论 -
马尔可夫决策过程的一些个人理解
(!一些个人理解!)马尔可夫决策过程:Agent与环境交互,通过优化Agent的行为策略,使Agent在环境中实现需要的状态策略:Agent根据环境选择行为,这一系列Agent选择的行为的组合及这样选择的概率就是达成目标的策略 (π是s的函数)回报函数:即时的,衡量Agent某一步动作的好坏(Agent的目标是累积起来的回报函数最大)值函数:长期的,该状态下累积回报的平均值(平均值:每一路径都是一个马尔可夫链,马尔可夫链的Gt即累计回报,从该状态发出的马尔可夫链的累积回报的期望就是该状...原创 2022-03-05 20:19:38 · 704 阅读 · 2 评论 -
关于马尔可夫过程的一些学习笔记
①马尔可夫性质:已知“现在”的情况下,“未来”与“过去”彼此独立(N+1仅与N有关,与N以前的所有都无关)②马尔可夫过程:具有马尔可夫性质的随机过程③马尔可夫链:马尔可夫过程的原始模型,其任意时刻的状态是有限个可能状态之一,某时刻状态一旦确定后续状态与此前状态无关。④隐马尔可夫过程:双重随机过程,状态和状态间随机,状态和输出间亦随机,输出仅与当前状态有关⑤马尔可夫决策过程:考虑动作,系统下一时刻的状态与当前时刻的状态和当前时刻采取的动作有关⑥部分可观察马尔可夫决策过程:环境状态部分可知,原创 2022-03-04 17:10:58 · 541 阅读 · 0 评论