1. 引言
差分进化(Differential Evolution, DE)是一种简单而强大的全局优化方法,广泛应用于各种实际问题的优化。而当我们遇到需要同时优化多个目标的问题时,多目标优化就变得尤为重要。本文将详细探讨多目标优化的差分进化,以及其在MATLAB中的变体实现。我们将逐步讨论差分进化的基本概念、如何将它应用于多目标优化,以及如何在MATLAB中编写对应的代码。
2. 差分进化基础
2.1 差分进化简介
差分进化是一种遗传算法,它利用种群的多样性为基础,通过不断的迭代和进化找到问题的最优解。DE的主要思想是通过对种群中的解进行变异、交叉和选择来生成新的解。
2.2 差分进化的主要步骤
- 初始化:生成一个随机的种群。
- 变异:为每个个体生成一个差分变异向量。
- 交叉:与其它个体交叉,产生新的解。
- 选择:根据适应度函数选择最优的解进入下一代。
以下是DE的简单MATLAB代码框架: