目录
后记:●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教!
1.问题导引:
作者在进行《算法》学习的时候,遇到了这样一个算法题,题目内容如下:
迷宫问题:假设有一个迷宫,里面有障碍物,迷宫用二维矩阵表示,标记为0的地方表示可以通过,标记为1的地方表示障碍物, 不能通过。现在给一个迷宫出口,让你判断是否可以从入口进来之后,走出迷宫,每次可以向任意方向走。题目要求:请使用广度优先搜索(BFS)与回溯法解决,其他不做要求。
2.问题分析:
这里题目要求使用广度优先搜索(BFS)与回溯法解决。我们可以回顾广度优先搜索与回溯法的概念与思想。
这里直接对问题进行分析解决:举例:
假设这是一个4*4的迷宫,入口在(0,0)的位置,出口在(3,3)的位置,这里采用队列实现,存储迷宫中的位置,广度优先搜索属于一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位置,彻底地搜索整张图,直到找到结果为止。所以每一个点在走的过程中需要标记是否已经走过了。 每一步搜索过程中会进行判断,进行上、下、左、右四个方向的搜索。重复这个过程,直到走到出口为止。代码解析这个过程,最关键的步骤用当前位置带出新的位置,新的位置可以存放在一个容器(vector)或者队列(queue)中。位置需要用坐标表示,这里封装出一个node。
说明:
迷宫问题其实有很多值得探讨的方向。如果有兴趣的读者,可以探讨使用BFS与回溯法求解迷宫最短路径问题,例如:输出满足要求的路径坐标以及最短路径坐标等。
作者之前学习探讨了“使用深度优先搜索(DFS)与回溯法求解迷宫问题及最短路径问题”,有兴趣的读者可以探讨交流。
<使用DFS与回溯法求解迷宫问题>文章链接:
<迷宫问题及最短路径问题(使用DFS与回溯法求解)>
这里由于是针对算法刷题,作者没有对探讨使用BFS与回溯法求解迷宫最短路径问题进行详细的探讨。
3.问题实现:
测试用例演示:
完整代码:
//BFS与回溯法解决迷宫问题 #include<iostream> #include<queue> #include<vector> using namespace std; class node { public: node(int x, int y) { this->_x = x; this->_y = y; } public: int _x; int _y; }; //queue实现 bool BFS(vector<vector<int>> graph, int startx, int starty, int destx, int desty) { //迷宫的大小 int row = graph.size(); int col = graph[0].size(); //存储迷宫中的位置 queue<node> q; //标记迷宫中的位置是否被走过 vector<vector<int>> book; book.resize(row); for (size_t i = 0; i < row; i++) { book[i].resize(col, 0); } q.push(node(startx, starty)); //标记已经走过 book[startx][starty] = 1; //四个行走的方向,上下左右 int next[4][2] = { {1,0},{-1,0},{0,1},{0,-1} }; //标记是否可以走出迷宫 bool flag = false; while (!q.empty()) { //如果位置为目标位置,则结束查找 if ((q.front()._x == destx) && (q.front()._y == desty)) { flag = true; break; } //当前位置带出所有新的位置,可以上下左右走 for (size_t i = 0; i < 4; i++) { //计算新的位置 int nx = q.front()._x + next[i][0]; int ny = q.front()._y + next[i][1]; //新的位置越界,继续下一个 if (nx >= row || nx < 0 || ny >= col || ny < 0) continue; //如果新的位置无障碍并且之前也没走过,保存新的位置 if (graph[nx][ny] == 0 && book[nx][ny] == 0) { q.push(node(nx, ny)); //标记已被走过 book[nx][ny] = 1; } } if (flag) break; //否则,用新的位置继续向后走 q.pop(); } //输出所有被标记为1的布局 //容器实现的二维数组打印 for (int i = 0; i < book.size(); ++i) { for (int j = 0; j <book[i].size(); ++j) { cout << book[i][j] << " "; } cout << endl; } return flag; } int main() { //定义入口、出口坐标变量 int startx, starty, endx, endy; vector<vector<int>> graph; int row, col; cout << "请输入迷宫的布局:行,列:" << endl; cin >> row >> col; //开辟迷宫空间 graph.resize(row); for (size_t i = 0; i < row; i++) { graph[i].resize(col); } //初始化迷宫 cout << "请输入迷宫的布局:" << endl; for (size_t i = 0; i < row; i++) { for (size_t j = 0; j < col; j++) { cin >> graph[i][j]; } } //判断是否能够走出迷宫 while (1) { cout << "请输入迷宫入口和出口(坐标):" << endl; cin >> startx >> starty >> endx >> endy; cout << "BFS遍历路径:" << endl; cout << "是否可以走出迷宫:(1:是 0:否)"<<endl << BFS(graph, startx, starty, endx, endy) << endl; } return 0; }