💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于联合双边滤波和局部梯度能量的多模态医学图像融合。作为生物医学诊断的强大辅助技术,近年来已成为热门话题。然而,对于许多医学图像融合算法来说,在融合性能、时间消耗和噪声鲁棒性之间的权衡仍然是一个巨大挑战。本文提出了一种有效、快速和稳健的医学图像融合方法。通过联合双边滤波引入了两层分解方案,能量层包含丰富的强度信息,结构层捕获了丰富的细节。然后,提出了一种基于结构张量和邻域能量的新型局部梯度能量算子,用于融合结构层,并引入了l1-max规则来融合能量层。在实验中对涵盖五种不同类别的医学图像融合问题的118对共注册医学图像进行了测试。比较了七种最新的代表性医学图像融合方法,并充分利用了六种代表性的质量评估指标来客观评价融合结果。广泛的实验结果表明,所提出的方法在视觉质量和定量评价方面均优于一些最新方法,并且实现了近乎实时的计算效率和对噪声的稳健性。
介绍
由于成像传感器和机制的多样性,不同模态的医学图像可能反映出各种组织/器官信息。对于解剖成像技术,计算机断层扫描(CT)图像对于密集结构(如骨骼和植入物)非常敏感。然而,CT图像无法捕获软组织的详细信息。磁共振(MR)图像显示了高空间分辨率的软组织结构的解剖对比,但无法检测人体代谢活动的活动信息。MR-T1图像在一定程度上准确反映了解剖结构。相比之下,MR-T2提供了组织病变的细节。对于功能图像,正电子发射断层扫描(PET)图像可以反映细胞和分子的生物活动,单光子发射计算机断层扫描(SPECT)图像可以显示组织/器官在分子水平上的代谢活动信息。然而,PET和SPECT的空间分辨率相对较低。为了准确描述病灶,医生通常需要综合分析多种不同模态的医学图像,这可能不可避免地给临床应用带来一些不便和低效率。
📚2 运行结果
部分代码:
%% RGB to YUV
B_YUV=ConvertRGBtoYUV(B);
BB=B_YUV(:,:,1);
E1 = RollingGuidanceFilter(A,s,r,1);
E2 = RollingGuidanceFilter(BB,s,r,1);
S1= A-E1; S2= BB-E2;
LGE1=STO(S1).*local_energy(S1,N);
LGE2=STO(S2).*local_energy(S2,N);
map=(LGE1>LGE2);
map=majority_consist_new(map,T);
FS=map.*S1+~map.*S2; % fused structure layer
map2=abs(E1>E2);
FE= E1.*map2+~map2.*E2; % fused energy layer
F=FE+FS; % temp fused result
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。