💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
BP神经网络是一种反馈性神经网络,具有结构简单、调整参数少等优点,经常被用在模式识别以及数据压缩和预测等方面.基本的BP神经网络为三层网络结构,如图1所示.
BP算法的核心思想:使用梯度下降来搜索可能的权向量的假设空间,以找到最佳的拟合样例的权向量。具体而言,即利用损失函数,每次向损失函数负梯度方向移动,直到损失函数取得最小值。
或者说,反向传播算法,是根据损失函数,求出损失函数关于每一层的权值及偏置项的偏导数,也称为梯度,用该值更新初始的权值和偏置项,一直更新到损失函数取得最小值或是设置的迭代次数完成为止。以此来计算神经网络中的最佳的参数。
由此,正式介绍BP算法前,我们需要知道前向传播过程,确定网络的设计。为此先设定一个只有一层的神经网络,作为讲解。
帝企鹅优化算法(emperor penguin optimizer,EPO)是Gaurav 等提出的一种新型群智能优化算法,其思想是模拟帝企鹅群体冬天拥挤在一起取暖的行为进行寻优。Baliarsingh 等进一步将EPO算法用于求解多目标优化问题。Kumar 等将EPO算法用于处理图像分割问题。Jia等通过结合多项式变异、levy飞行及热交换操作策略改进帝企鹅优化算法。
由上述可知,帝企鹅算法已经被应用于优化工程设计、图像分割、特征选择以及资源调度等复杂问题,且具有较优的性能。详细知识点见第四部分。
本文构建了基于帝企鹅算法优化 BP(AFO-BP)神经网络的数据预测模型。使用AFO优化传统BP神经网络的初始参数,有助于解决BP神经网络易陷入局部最优,以及对模型初始连接权值、阈值选择敏感等缺点。
基于帝企鹅算法优化BP神经网络的数据预测研究听起来很有趣!帝企鹅算法是一种基于动物行为的启发式优化算法,而BP神经网络则是一种常用的机器学习模型,用于数据预测和分类任务。将这两者结合起来,可以提高神经网络的训练效率和预测准确性。
在你的研究中,你可以按照以下步骤进行:
1. **了解帝企鹅算法:** 首先,深入了解帝企鹅算法的原理和运作方式。这包括研究帝企鹅的行为,如寻找食物和迁徙,以及如何将这些行为转化为数学模型。
2. **研究BP神经网络:** 对BP神经网络的原理和结构进行深入了解。了解神经网络的反向传播算法以及如何使用梯度下降来优化网络参数。
3. **整合帝企鹅算法和BP神经网络:** 将帝企鹅算法与BP神经网络相结合,以优化神经网络的训练过程。这可能涉及到使用帝企鹅算法来调整神经网络的权重和偏置,以最小化预测误差。
4. **选择合适的数据集和问题:** 选择一个适当的数据集和预测问题,以验证你的方法。这可能涉及到时间序列预测、回归问题或分类问题等。
5. **实验和评估:** 进行实验,比较使用帝企鹅算法优化的BP神经网络与传统的BP神经网络在预测准确性和训练效率上的差异。使用合适的评估指标来评估模型的性能,如均方误差(MSE)、准确率、召回率等。
6. **结果分析和讨论:** 分析实验结果,讨论帝企鹅算法对BP神经网络性能的影响,并探讨可能的改进方法和未来研究方向。
通过以上步骤,你可以完成一项系统性的研究,探索帝企鹅算法在优化BP神经网络中的应用,为数据预测领域带来新的启示和方法。
📚2 运行结果
部分代码:
%% 基于帝企鹅算法优化BP神经网络实现数据预测
function [result]=myBP(option,data)
hiddenumber=data.hiddenumber;
inputnumber=data.inputnumber;
outputnumber=data.outputnumber;
S=data.S;
indexM=data.indexM;
N=data.N;
input_train=data.train_x0;
output_train=data.train_y0;
input_test=data.test_x0;
%新建bp神经网络
net0=newff(input_train',output_train',hiddenumber);
%net0.trainFcn='traingd';
net0.trainParam.epochs=50;%训练次数
net0.trainParam.lr=0.01;%学习率
net0.trainParam.goal=0.000001;
net0.trainParam.showWindow = false; % 不显示训练窗口
net0.trainParam.showCommandLine = false;% 命令行不显示结果
[net0,tr]=train(net0,input_train',output_train');
ygabptest=sim(net0,input_test');
ygabptest=mapminmax('reverse',ygabptest,option.ps_y);%预测数据反归一化
T2=mapminmax('reverse',data.test_y0',option.ps_y);%预测数据反归一化
fit=sum(sum((ygabptest-T2).^2));
result.net=net0;
result.ygabptest=ygabptest';
result.T2=T2;
ygabptrain=sim(net0,input_train');
ygabptrain=mapminmax('reverse',ygabptrain,option.ps_y);%预测数据反归一化
T1=mapminmax('reverse',data.train_y0',option.ps_y);%预测数据反归一化
result.ygabptrain=ygabptrain';
result.T1=T1;
end
%% 基于帝企鹅算法优化BP神经网络实现数据预测
function [result]=myBP(option,data)
hiddenumber=data.hiddenumber;
inputnumber=data.inputnumber;
outputnumber=data.outputnumber;
S=data.S;
indexM=data.indexM;
N=data.N;
input_train=data.train_x0;
output_train=data.train_y0;
input_test=data.test_x0;
%新建bp神经网络
net0=newff(input_train',output_train',hiddenumber);
%net0.trainFcn='traingd';
net0.trainParam.epochs=50;%训练次数
net0.trainParam.lr=0.01;%学习率
net0.trainParam.goal=0.000001;
net0.trainParam.showWindow = false; % 不显示训练窗口
net0.trainParam.showCommandLine = false;% 命令行不显示结果
[net0,tr]=train(net0,input_train',output_train');
ygabptest=sim(net0,input_test');
ygabptest=mapminmax('reverse',ygabptest,option.ps_y);%预测数据反归一化
T2=mapminmax('reverse',data.test_y0',option.ps_y);%预测数据反归一化
fit=sum(sum((ygabptest-T2).^2));
result.net=net0;
result.ygabptest=ygabptest';
result.T2=T2;
ygabptrain=sim(net0,input_train');
ygabptrain=mapminmax('reverse',ygabptrain,option.ps_y);%预测数据反归一化
T1=mapminmax('reverse',data.train_y0',option.ps_y);%预测数据反归一化
result.ygabptrain=ygabptrain';
result.T1=T1;
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李旭飞,王贞.求解约束优化问题的改进帝企鹅优化算法[J].计算机工程与设计,2021,42(03):703-710.
[2]刘湲,王芳.麻雀搜索算法优化BP神经网络的短期风功率预测[J].上海电机学院学报,2022,25(03):132-136.