结构张量structure tensor(matlab)

本文介绍了结构张量在图像处理中的应用,用于区分平坦、边缘和角点区域。结构张量是一个矩阵,用于组织图像像素数据。通过计算矩阵的行列式K和迹H,可以识别图像的不同区域模式。在MATLAB中实现该算法,首先读取图像,然后计算偏导数,进而得到结构张量。最后,根据K和H的关系确定图像特征。提供的代码示例展示了如何在MATLAB中处理图像并显示不同区域的结果。
摘要由CSDN通过智能技术生成

目录

一、结构张量是什么

二、如何用matlab实现

1、打开matlab软件,点击新建,出现编辑器界面

2、将以下代码复制到编辑器中(注意命名规则,不然容易出错,文件名有*代表还没有保存) 

3、点击运行,出结果

4、注意事项

参考文档


一、结构张量是什么

根据结构张量能区分图像的平坦区域、边缘区域与角点区域。

此算法也算是计算机科学最重要的32个算法之一了。链接的文章中此算法名称为Strukturtensor算法,不过我搜索了一下,Strukturtensor这个单词好像是德语,翻译过来就是structure tensor结构张量了。

此处所说的张量不是相对论或黎曼几何里的张量,黎曼几何的张量好多论文都叫张量场了。也不是数学界还没研究明白的对矩阵进行扩展的高阶张量,主要是张量分解。这里的结构张量就是一个矩阵,一个对图像像素进行组织的数据结构而已。

像素组织而成的矩阵如下:

这个公式太常见了,在harris角点检测中就用到了。其中Ix,Iy就是原对原图像在x和y方向求得的偏导。

然后求矩阵E的行列式K和迹H。然后根据K和H的关系就能区分图像的区域模式了。

模式分以下三类:

平坦区域:H=0;

边缘区域:H>0 && K=0;

角点区域:H>0 && K>0;

harris角点检测就用到了第三类判断。

当然,在实际应用的时候H和K的值肯定都不会是理想,所以我用的都是近似判断。

处理结果如下:

原图:

平坦区域:

边缘区域:

角点区域(好像也不全角点,求角点还是harris好了):

结构张量行列式与迹的关系:

其中红框为平坦区域,黄框为边缘区域,铝框为角点区域。

二、如何用matlab实现

1、打开matlab软件,点击新建,出现编辑器界面

2、将以下代码复制到编辑器中(注意命名规则,不然容易出错,文件名有*代表还没有保存) 

clear all;close all;clc;
img=imread('D:\煤堆\4.jpg');
ycc=rgb2ycbcr(img);
y=ycc(:,:,1);
figure,imshow(y);
[M,N]=size(y);
dirctImg=direction(double(y),2);
radius=1;
[xx,yy]=meshgrid(1:radius:N,1:radius:M);
DX=dirctImg(1:radius:end,1:radius:end,2);
DY=dirctImg(1:radius:end,1:radius:end,1);
figure(5),quiver(xx,yy(end:-1:1,:),DX,DY);

3、点击运行,出结果

4、注意事项

img=imread("D:\煤堆\4.jpg")这个就是你图片所放的位置

参考文档

matlab练习程序(结构张量structure tensor) - Dsp Tian - 博客园

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小负不负

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值