一、直观分析法:
- 步骤:
- 计算每个因素水平下的试验指标均值。
- 绘制因素水平与试验指标均值的图表,进行直观比较。
- 作用:快速、直观地了解各因素对试验结果的影响,为进一步分析提供参考。
- 均值分析:计算每个因素水平下的试验指标均值,直观比较各水平的效果。
- 极差分析:计算每个因素的极差,即最大均值与最小均值之差,评估各因素的显著性。
二、方差分析(ANOVA):
- 步骤:
- 构建方差分析表,包括各因素及误差项。
- 计算各因素及误差项的平方和、自由度、均方和、F值。
- 通过F检验判断各因素的显著性。
- 作用:定量评估各因素及其交互作用对试验结果的显著性,筛选出关键因素。
- 用于确定各因素及其交互作用对试验指标的显著性。通过计算各因素的方差贡献率,评估其对试验结果的影响大小。
三、回归分析:
- 步骤:
- 确定回归模型的形式(如线性模型、非线性模型等)。
- 利用试验数据进行回归分析,估计模型参数。
- 评价模型的拟合优度和预测能力。
- 作用:建立试验因素与试验指标之间的定量关系,进行结果预测和优化设计。
- 建立试验因素与试验指标之间的数学模型,定量描述各因素对试验指标的影响关系。
四、主成分分析(PCA):
- 步骤:
- 标准化试验数据。
- 计算相关矩阵或协方差矩阵。
- 进行特征值分解,提取主成分。
- 作用:降低数据维度,提取主要影响因素,简化数据分析,提高分析效率。
- 用于降维和去噪,提取主要影响因素,简化数据分析。
五、信噪比分析(S/N比):
- 步骤:
- 计算每个因素水平下的信噪比。
- 比较信噪比,筛选出对试验结果稳定性影响最大的因素。
- 作用:评估各因素对试验指标稳定性的影响,优化设计,提高产品质量
- 特别适用于田口方法,通过计算信噪比,评估各因素对试验指标的稳定性影响。