LSTM进行时间序列预测——训练,验证,测试

博主分享了自己初次尝试时间序列预测的经历,使用LSTM模型进行训练,并对数据进行了小波分析降噪。通过划分训练集、验证集和测试集,最终得出初步预测结果。尽管模型表现不佳,但博主认为这是进步的开始。文章强调了验证集的重要性,并展示了代码实现,包括数据处理、模型构建、预测与评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近一直在忙这个时间序列数据的预测,起初一直搞不清测试集和验证集的作用,最近看了很多资料,稍微有了点理解,基于自己的理解和网上的代码,刚刚基于我的需求跑出了想要的结果,虽然数值上误差还很大,不过老师说预测数据的好坏是比较出来的,所以我现在能跑出个结果还是很大的进步~接下来我就把我的代码放在下面记载一下自己的学习过程。

首先,准备数据集。这个数据集是我从某个电商插件上收集到的,原数据数据波动其实挺大的,最后用小波分析对数据进行了简单的降噪。

(后来导师说这个方法不能同时处理整个数据集,这样会导致原始数据改变,预测结果也会改变,这样的话整个预测就没有意义了。这就好比是数据归一化处理之后,没有反归一化,那么这样预测的数据是没有意义的。因为我只是想记录下整个预测过程,对数据的要求不大。所以我的这个实验直接用小波分析后的数据)

数据如下

链接:https://pan.baidu.com/s/1FY2YWZt-LuMQ3tbgNTC-GQ 
提取码:zxt1

由于我找的这份代码是单步预测,意思是一次只预测一个未来值,所以我在整个数据下面增加了一个预测数据——2022/10/1,其对应的销量我设置成0,这个不写的话会报错,而且这个0本来就是未知的,我们最终会预测出来2022/10/1对应的预测值

 下面是相关代码——代码是基于Jupyter notebook来编写的。

1、导入相关库

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值