ARIMA模型进行销售数据预测

ARIMA模型的预测分为以下几部分

 

1、导入相关库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.stats.diagnostic import acorr_ljungbox
from statsmodels.graphics.tsaplots import plot_pacf, plot_acf
plt.rcParams['font.sans-serif'] = ['Simhei']
plt.rcParams['axes.unicode_minus'] = False
import statsmodels.tsa.stattools as st

2、导入数据

由于ARIMA方法对数据的平稳性有很高的要求,所以如果你的数据波动较大的话,还需要先进行降噪等操作来处理,我之前的数据波动性很大,然后我导师给我讲了一种方法——小波分解,处理尖峰波动数据很有效。下面是我数据的处理前后对比图,

 效果还是挺明显的。下面是小波分解的代码,直接把你的数据传进去,然后定义一个新的csv文件,把新的csv文件地址放上去,降噪后的数据直接就输出到这个新建的csv文件里了

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import pywt
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']

# 封装成函数
def sgn(num):
    if (num > 0.0):
        return 1.0
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值