CNN算法(二)——稠密连接网络DenseNet


上一次的ResNet模型的核心是通过建立前面层与后面层之间的”短路连接“。而今天的DenseNet模型,他的基本思路与ResNet一致,但它建立的是前面所有层与后面层的密集连接。

一、使用pytorch实现DenseNet121完整代码

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings
import matplotlib.pyplot as plt
import copy
import torch.nn.functional as F
from PIL import Image

#隐藏警告
import warnings

warnings.filterwarnings("ignore")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

#导入数据
import os,PIL,random,pathlib
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

data_dir = r'D:\编程文件\数据库\J1ResNet-50\第8天\bird_photos'
data_dir = pathlib.Path(data_dir)


#查看数据
image_count=len(list(data_dir.glob('*/*')))
print("图片数为:",image_count)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[6] for path in data_paths]
print(classeNames)


#加载数据
batch_size = 2

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("D:\编程文件\数据库\P2天气识别\weather_photos",transform=train_transforms)
print(total_data)

print(total_data.class_to_idx)


#划分数据集
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)


train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=0)

#检查数据
if __name__ == '__main__':
    for X, y in test_dl:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break

image_folder = r'D:\编程文件\数据库\J1ResNet-50\第8天\bird_photos\Cockatoo'  # 指定图像文件夹路径
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]
fig, axes = plt.subplots(2, 4, figsize=(16, 6))

for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
plt.tight_layout()
plt.show()

#构建残差模型
# 构造ResNet50模型
class DenseLayer(nn.Sequential):
    def __init__(self, num_input_features,growth_rate,bn_size,drop_rate):
        super(DenseLayer, self).__init__()
        self.add_module("norm1",nn.BatchNorm2d(num_input_features))
        self.add_module("relu1",nn.ReLU(inplace=True))
        self.add_module("conv1",nn.Conv2d(num_input_features,bn_size*growth_rate,kernel_size=1,stride=1,bias=False))

        self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2",
                        nn.Conv2d(bn_size*growth_rate, growth_rate, kernel_size = 3, stride=1, padding=1,bias=False))
        self.drop_rate=drop_rate

    def forward(self, x):
        new_features=super(_DenseLayer,self).forward(x)
        if self.drop_rate>0:
            new_features=F.dropout(new_features,p=self.drop_rate,training=self.training)

        return torch.cat([x,new_features],1)


class _DenseBlock(nn.Sequential):
    def __init__(self, num_layers,num_input_features,bn_size,growth_rate,drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer=_DenseLayer(num_input_features+i*growth_rate,growth_rate,bn,drop_rate)
            self.add_module("denselayer%d"%(i+1,),layer)


class _Transition(nn.Sequential):
    def __init__(self,num_input_feature,num_output_feature):
        super(_Transition,self).__init__()
        self.add_module("norm",nn.BatchNorm2d(num_input_feature))
        self.add_module("relu",nn.ReLU(inplace=True))
        self.add_module("conv",nn.Conv2d(num_input_feature,num_output_feature,kernel_size=1,stride=1,bias=False))
        self.add_module("pool",nn.AvgPool2d(2,stride=2))

class DenseNet(nn.Module):
    def __init__(self,growth=32,block_config=(6,12,24,16),num_init_feature=64,
                 bn_size=4,compression_rate=0.5,drop_rate=0,num_classes=1000):
        super(DenseNet, self).__init__()
        # first Conv2d
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(3, stride=2, padding=1))
        ]))

        # DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module("denseblock%d" % (i + 1), block)
            num_features += num_layers * growth_rate
            if i != len(block_config) - 1:
                transition = _Transition(num_features, int(num_features * compression_rate))
                self.features.add_module("transition%d" % (i + 1), transition)
                num_features = int(num_features * compression_rate)

        # final bn+ReLu
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))

        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)

        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out


def densenet121(pretrained=False, **kwargs):
    """DenseNet121"""
    model = DenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs)
    if pretrained:
        # '.'s are no longer allowed in module names, but pervious _DenseLayer
        # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.
        # They are also in the checkpoints in model_urls. This pattern is used
        # to find such keys.
        pattern = re.compile(
            r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
        state_dict = model_zoo.load_url(model_urls['densenet121'])
        for key in list(state_dict.keys()):
            res = pattern.match(key)
            if res:
                new_key = res.group(1) + res.group(2)
                state_dict[new_key] = state_dict[key]
                del state_dict[key]
        model.load_state_dict(state_dict)
    return model

import torchvision.models as models

model = models.densenet121(pretrained=True)


#编写训练函数
def train(dataloader, model, optimizer, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)

    train_acc, train_loss = 0, 0

    for X, y in dataloader:
        X, y = X.to(device), y.to(device)

        pred = model(X)
        loss = loss_fn(pred, y)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()

    train_loss /= num_batches
    train_acc /= size

    return train_acc, train_loss


#编写测试函数

def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss



#设置损失函数和学习率
loss_fn = nn.CrossEntropyLoss()   #交叉熵函数
learn_rate = 1e-3
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)

#正式训练
epochs = 8
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0

# 开始训练
for epoch in range(epochs):

    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, opt, loss_fn)

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    lr = opt.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
                          epoch_test_acc * 100, epoch_test_loss, lr))

print('Done')

#结果可视化
import warnings

warnings.filterwarnings("ignore")  # 忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100  # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

二、理论知识储备

1.设计理念

  • ResNet是每个层与前面的某层(一般是2~4层)短路连接在一起,连接的方式是通过元素相加

  • DenseNet中,每个层都会与前面所有层在channel维度连接(concat)在一起,是通过元素叠加,并作为下一层的输入。

  • 在这里插入图片描述

2.DenseNet与RestNet最主要区别

对于一个L层的网络,DenseNet共包含L(L+1)/2个连接,相比于RestNet,这是一种密集连接,而且DenseNet是直接concat来自不同层的特征图,进而可以实现特征重用,提升效率,这是两者最主要的区别。

3.网络结构

DenseNet网络中使用DenseBlock+Transition的结构。

  • 其中DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式; 结构为BN+ReLU+3x3 Conv
  • Transition层是连接两个相邻的DenseBlock,并且通过Pooling使特征图大小降低。
    结构为BN+ReLU+1x1Conv+2x2AvgPooling

4.DenseNet的几个结构

  • DenseNet-B结构:由于后面层的输入会非常大,DenseBlock内部可以采用bottleneck层来减少计算量,主要是原有的结构中增加1x1Conv,即BN+ReLU+1x1Conv+BN+ReLU+3x3Conv
  • DenseNet-C结构:假定Transition层的上接DenseBlock得到的特征图channels数为 m,Transition层可以产生[θm]个特征(通过卷积层),其中θ∈(0,1]是压缩系数。当θ=1时,特征个数经过Transition层没有变化,即无压缩,而当压缩系数小于1时,为DenseNet-C结构。
  • DenseNet-BC结构:对于使用bottleneck层的DenseBlock结构和压缩系数小于1的Transition组合结构

5.DenseNet121

  • DenseNet121模型中,每个Dense Block内部使用BN+ ReLU + 3x3
    Conv的组合函数,并且可能包含Bottleneck结构,即在3x3卷积前使用1x1卷积来减少特征图的维度,降低计算量 。即BN+ReLU+1x1Conv+BN+ReLU+3x3Conv。
  • DenseNet121的一个关键参数是growth rate,它定义了每个Dense Layer输出的feature
    maps数量。在DenseNet121中,这个值被设置为32,意味着每个Dense Layer会为网络新增32个feature maps。
  • 在Torchvision库中,DenseNet121可以通过torchvision.models.densenet121函数直接调用,并支持使用预训练权重。
  • 15
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种机器学习算法,其主要应用于图像识别、计算机视觉和模式识别等领域。CNN模型的设计灵感来源于科学家们对于生物视觉系统的研究。该算法的核心概念是通过卷积层、池化层和全连接层的组合,对输入的图像进行特征提取和分类。 在CNN中,卷积层是该模型的主要组成部分之一。通过定义一组卷积核(或过滤器),卷积层可以对输入的图像进行滤波操作,将原始图像中的特定特征(例如边缘和纹理)提取出来,并生成一系列特征图。这些特征图可以被认为是对原始图像进行不同尺度和方向的特征提取。 在经过卷积层之后,通常会接着使用池化层来进行下采样操作。池化层的主要目的是减小特征图的尺寸,同时保留重要的特征信息。最常见的池化操作是最大池化,它通过从特定区域选择最大值来减小特征图的尺寸。 最后,经过卷积层和池化层的多次迭代后,最后会以全连接层作为输出层,进行分类任务。全连接层的每个节点都与前一层的所有节点相连接,主要用于将最后一层的特征进行整合,并根据特征进行分类或回归。 相比于传统机器学习算法CNN在处理图像任务方面具有更好的性能。这是因为卷积层可以通过共享权重和局部连接的方式进行参数的共享,大大减少了需要训练的参数数量,并且能够有效处理图像的平移不变性。此外,卷积神经网络还可以通过堆叠多个卷积层和全连接层来构建深层网络模型,从而进一步提高模型的性能。 总而言之,卷积神经网络是一种强大的机器学习算法,特别适用于图像识别和计算机视觉任务。通过卷积层、池化层和全连接层的组合,CNN可以有效地提取图像中的特征,并进行分类或回归等任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值